博碩士論文 993209005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.117.133.115
姓名 王思遠(Sz-yuan Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 自組裝複合式鍺量子點成長機制及其應用之研究
(Investigating the Growth Mechanism of Self-Assembled Composite Germanium Quantum Dots and its Applications)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自組裝鍺量子點在近年來已引起廣泛之興趣,矽鍺之量子點,量子井及矽鍺緩衝層的成長已在多處被開發及研究,其中在光電材料、熱電材料與電子元件,亦有許多的應用。本研究更進一步探討複合式鍺量子點之形成機制,因為對複合式鍺量子點之導電、導熱以及熱電優值等物理特性,與其形貌結構、應力狀態、成份分佈、生長條件有著密不可分的關係。
總結上述之分析,本研究探討以超高真空化學氣相沉積系統所製備出之不同溫度、沉積時間及氣流之高品質矽鍺量子點,其結構包含傳統式矽鍺量子點、複合式鍺卅矽卅鍺量子點及三重複合式鍺卅矽卅鍺卅矽卅鍺量子點,並將量子點經退火處理及改變其中矽嵌入層之厚度。以高選擇性濕式化學蝕刻溶液搭配原子力顯微鏡、穿透式電子顯微鏡和拉曼光譜儀針對矽鍺量子點之內部矽鍺相互擴散之成份分佈、表面形態、原子排列以及應力狀態深入之分析,進而控制量子點將此研究結果應用至元件上,經由量測可以得知複合式鍺量子點在熱電元件的製作是具有未來發展的可能性。
摘要(英) In recent years, quantum dots have been on the rise in the self-assembling processes. For optoelectronic materials, thermoelectric materials and electronic devices applications, the quantum dots, quantum wells and SiGe buffer layer structures have been developed and studied in various ways. Because of the physical properties, such as electrical conductivity and thermal conductivity of the germanium quantum dots are strongly influenced by morphology, composition, strain condition and growth conditions. The formation mechanism of the germanium quantum dots needs to be further studied.
Therefore, this research investigated high-quality SiGe quantum dots at various temperatures, deposition time and carrying gas by ultrahigh vacuum chemical vapor deposition system. The structure included the conventional SiGe quantum dots, composite Ge/Si/Ge quantum dots and triple Ge/Si/Ge/Si/Ge quantum dots. All these three types of quantum dots were performed further annealing treatment or decreased the silicon insert layer thickness. It showed that highly selective wet etching combined with the atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectrum can be used to obtain useful information, which was pertaining to the composition distribution, surface morphology, atomic arrangement and strain condition of the SiGe quantum dots interdiffusion.
Finally, the results of these controllable quantum dots structures in this research can be further applied to the electronic devices. The outcome of the experiments demonstrated that composite germanium quantum dots would be potentially valuable as a new thermoelectric material.
關鍵字(中) ★ 熱電效應
★ 超高真空化學氣相沉積
★ 量子點
★ 自組裝
★ 矽鍺
關鍵字(英) ★ UHV/CVD
★ Quantum dot
★ Self-assembled
★ SiGe
★ Thermal effect
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 半導體元件 1
1.3 矽鍺磊晶 3
1.4 熱電效應 4
參考文獻 10
第二章 實驗方法 12
2.1 矽鍺量子點之製備 12
2.2 選擇性化學濕式蝕刻 13
2.3 實驗儀器 14
2.3.1 原子力顯微鏡 14
2.3.2穿透式電子顯微鏡 15
2.3.3 拉曼光譜儀 17
參考文獻 18
第三章 自組裝複合式鍺量子點之成長機制 19
3.1 研究動機 19
3.2 實驗方法 21
3.3 結果與討論 22
3.3.1 矽鍺量子點之成長機制 22
3.3.2 退火對鍺量子點成長機制之影響 32
3.3.3 矽嵌入層減半對鍺量子點成長機制之影響 40
3.4 結論 46
參考文獻 47
第四章 自組裝複合式鍺量子點之應用 48
4.1 研究動機 48
4.2 實驗方法 49
4.3 結果與討論 49
4.4 結論 54
參考文獻 55
第五章 總結與未來研究 56
參考文獻 1.1 T. Caillat and J. –P. Fleurial, “Zn-Sb alloys for thermoelectric power generation,” Energy Conversion Engineering Conference, IECEC 96., Pr℃eedings of the 31st Inters℃iety 2, 905-909 (1996).
1.2 C. –Y. Peng, F. Yuan, C. –Y. Yu, P. –S. Kuo, M. H. Lee, S. Maikap, C. –H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys. Lett. 90, 012114 (2007).
1.3 M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, “Formation and optical properties of InAs/GaAs quantum dots for applications as infrared photodetectors operating at room temperature,” Appl. Phys. Lett. 82, 553-555 (2003).
1.4 Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Skuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys. 89, 5676 (2001).
1.5 J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7 (1998).
1.6 T. J. Seebeck, “Magnetische polarization der metalle und erzedurch temperature- differenze. Abhand deut,” Akad. Wiss. Berlin, 265-373 (1821).
1.7 J. C. Peltier, “Nouvelles experiences sur la caloriecete des courans electriques,” Ann. Chem. LVI, 371-387 (1834).
1.8 H. J. Goldsmid and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys. 5, 386-390 (1954).
1.9 F. Ioffe, “Semiconductor thermoelements and thermoelectric cooling,” Infosearch, London, (1957).
1.10 J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy Environ. Sci. 2, 466-479 (2009).
1.11 E. A. Skrabek and J. W. McGrew, “Pioneer 10 and 11 RTG performance update,” in Space Nuclear Power Systems 1987, 7, Orbit Book Co., Malabar, Florida, 587 (1988).
1.12 Kittel, “Introduction to solid state physics,” 8th edition, John Wiley & Sons, Inc (2005).
1.13 R. Richman, “Prospects for efficient thermoelectric materials in the near term,” In DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA. (2002).
1.14 T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, “Quantum dot superlattice thermoelectric materials,” Science 297, 2229-2232 (2002).
1.15 H℃hbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 (2008).
1.16 L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47, 12727 (1997).
2.1 D. L. Smith, “Thin-film deposition: principles and practice,” McGraw Hill, San Francisco (1995).
2.2 S. M. Gates, S. M. Greenlief, D. B. Beach, and P. A. Holbert, “Decomposition of silane on Si(111)-(7×7) and Si(100)-(2×1) surfaces below 500 °C,” J. Chen. Phys. 92, 3144 (1990).
2.3 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).
2.4 K. F. Dombrowski, I. D. Wolf, and B. Dietrich, “Stress measurements using ultraviolet micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 2450-2452 (1999).
3.1 L. W. Martin, Y. -H. Chu, and R. Ramesh, “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mat. Sci. Eng. R. 68, 89-133 (2010).
3.2 W. -H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. -J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958 (2003).
3.3 K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-assembled quantum dots for optoelectronic devices on Si and GaAs,” Physica E 9, 164-174 (2001).
3.4 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).
3.5 U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N. Y. Jin-Phillipp, D. E. Jesson, and O. G. Schmidt, “Lateral motion of SiGe islands driven by surface-mediated alloying,” Phys. Rev. Lett. 94, 216103 (2005).
3.6 S. W. Lee, H. T. Chang, J. K. Chang, and S. L. Chen, “Formation mechanism of self-assembled Ge/Si/Ge composite islands,” J. Electr℃hem. S℃. 158, H1113-H1116 (2011).
3.7 J. S. Reparaz, A. Bernardi, A. R. Goni, M. I. Alonso, and M. Garriga, “Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited,” Appl. Phys. Lett. 92, 081909 (2008).
4.1 A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, and G. Sazaki, “Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure,” Appl. Phys. Lett. 83, 1258-1260 (2003).
4.2 K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, and T. Shishido, “Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells,” Sol. Energ. Mat. Sol. C. 73, 305-320 (2002).
4.3 P. S. Chen, M. –J. Tsai, Y. H. Peng, C. W. Liu, and S.W. Lee, “Improvement of photoluminescence efficiency in stacked Ge/Si/Ge quantum dots with a thin Si spacer,” Phys. Stat. Sol. (b) 241, 3650-3655 (2004).
4.4 P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, “Controlling thermal conductance through quantum dot roughening at interfaces,” Phys. Rev. B 84, 035438 (2011).
4.5 J. S. Reparaz, A. Bernardi, A. R. Goni, M. I. Alonso, and M. Garriga, “Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited,” Appl. Phys. Lett. 92, 081909 (2008).
4.6 J. Singh, “Electronic and optoelectronic properties of semiconductor structure,” Cambridge, 181-263 (2003).
4.7 D. Li, Y. Wu, R. Fan, P. Yang, and A. Majudar, "Thermal conductivity of individual Si/SiGe superlattice nanowires," Appl. Phys. Lett. 83, 3186 (2003).
4.8 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明