博碩士論文 993209008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.147.48.198
姓名 楊淑惠(Shu-hui Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用
(Fabrication of phosphorous-doped silicon nanocrystals embedded in silicon-rich oxide films and their applications on heterojunction solar cells)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板
★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析
★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來在介電材料中形成含有磷或硼摻雜的奈米矽晶在光電元件、記憶體或是第三代太陽能電池上的應用皆受到相當大的關注。然而因為尺寸和高表面積與體積比,因此要在奈米矽晶中順利形成摻雜並非易事。而目前在製備含磷摻雜奈米矽晶的方法主要以濺鍍法或電漿輔助化學氣象沉積法再搭配高溫退火處理。而因電子迴旋共振化學氣象沉積(electron cyclotron resonance chemical vapor deposition, ECRCVD)相較於傳統的PE-CVD而言有沉積速率較快速、低離子轟擊、無電極汙染、較高的氣體使用率等優勢,因此本研究以ECR-CVD成長磷摻雜過飽和氧化矽薄膜(Si-rich oxide films)並以高溫熱退火處理使其在過飽和氧化矽薄膜中形成含磷摻雜之奈米矽晶,探討薄膜特性及其應用在矽基異質接面薄膜太陽能電池的表現。
本研究將針對高溫退火後所析出之含磷摻雜奈米矽晶薄膜以UV-Visible、Raman、XPS等儀器分析薄膜之吸收率、結晶性及原子鍵結型態。探討在通入不同CO2/SiH4和PH3/SiH4的氣體比例下,可得到薄膜整體吸收低於20 %,且導電率在10-1 Ω-1 cm-1。再針對磷摻雜的濃度做優化,將薄膜研究結果應用在異質接面太陽電池上,在氧/矽比不同和有無外加透明導電膜(ITO)的條件下,用快速退火爐對電極進行低溫退火處理。目前初步得到太陽電池的轉換效率(η) = 6 %;開路電壓(Voc) = 490 mV;短路電流(Jsc) =17.51 mA;填充因子(FF) = 70.5 %。
摘要(英) In recent years, fabrication of nanocrystalline silicon containing phosphorus or boron doped embedded in dielectric materials have attract many attentions because its potential such as in the optoelectronic components, memory or third-generation solar cells. However, doping of nanocrystals is not easy to be achieved due to their small size and large surface-to-volume ratios. At present, the method of preparation of phosphorus-doped silicon nanocrystals were sputtering or plasma-enhanced chemical vapor deposition with high-temperature annealing treatment. Compare to conventional PE-CVD, ECR-CVD have higher deposition rate, lower ion bombardment, no electrode contamination, higher gas usage and other advantages. In this study, electron cyclotron resonance chemical vapor deposition (ECR-CVD)were used to growth phosphorus-doped Si-rich oxide films, and to explore the film characteristics and the performance of silicon heterojunction thin film solar cells.
In this study, we present a fabrication method for p-doped Si-NCs embedded in silicon oxide by thermal annealing of heavily P-doped hydrogenated amorphous silicon oxide (a-SiO:H) films grown by electron cyclotron resonance chemical vapor deposition (ECRCVD). The electrical and optical properties of the annealed films were investigated. Finally, we fabricate heterojunction cell with the optimized recipe of the window layer from the result that we investigated, and there we have the Electro-optic convert efficiency 6%, the open-circuit voltage (VOC) = 490 mV, short-circuit current density (JSC) = 17.51 m A/cm2, and the fill factor (FF) = 70.5%.
關鍵字(中) ★ 異質接面太陽能電池
★ 電子迴旋共振化學氣相沉積系統
★ 含磷摻雜奈米矽晶
關鍵字(英) ★ ECR-CVD
★ phosphorous-doped silicon nanocrystals
★ heterojunction solar cells
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 前言 1
第二章 文獻回顧 3
2.1 太陽電池發展現況 3
2.2 材料尺寸微縮後產生之量子化行為 5
2.2.1 量子尺寸效應 5
2.2.2 量子侷限效應 7
2.2 奈米矽晶過飽和氧化矽薄膜之特性 8
2.2.1 薄膜結晶性與微結構 10
2.2.2 摻雜原子對薄膜特性的影響 12
2.3 奈米矽晶的製備方法 13
2.3.1 離子佈植(ion implantation) + 熱退火製程 13
2.3.2 過飽和化學氣相沉積(supersaturated chemical vapor deposition) + 熱退火製程 14
2.3.3 濺鍍(sputtering) + 熱退火製程 15
2.3.4 反應式蒸鍍 + 熱退火製程 15
2.4 奈米矽晶在太陽能電池的應用 16
第三章 實驗流程 19
3.1 製備含磷摻雜的過飽和氧化矽薄膜 20
3.2 熱處理含磷摻雜的過飽和氧化矽薄膜 21
3.2.1 過飽和氧化矽薄膜 21
3.2.2 製備異質接面太陽能電池 22
3.3 熱處理前後之薄膜特性分析與電池表現 23
1. 拉曼光譜儀 (Raman spectroscopy) 24
2. 紫外可見光光譜儀(UV-visible spectrometer) 24
3. 光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 24
4. 電性量測(voltage-current measurement) 24
5. 量子轉換效率(quantum efficiency, QE) 24
6. 太陽模擬光量測系統(solar simulator) 25
第四章 結果與討論 26
4.1 含磷摻雜之過飽和氧化矽薄膜特性分析 26
4.1.1 光性探討 26
4.1.2 結晶性質與微結構分析 29
4.1.3 不同O/Si和摻雜濃度對電性與活化能的影響 31
4.2 太陽電池表現 35
4.2.1 電極先進行熱處理與否對於電池表現的影響 35
4.2.2 ITO和Al電極之沉積序列對電池表現的影響 39
4.2.3 ITO在不同退火溫度處理對電池表現的影響 41
第五章 結論 42
參考資料 43
參考文獻 參考資料
1. William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, J. Appl. Phys., 32, (1961), 510.
2. D. M. Chapin, et al. “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25, (1954), 676.
3. Martin A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond”, Physica E, 14, (2002), 65.
4. Martin A. Green, et al. Fangsuwannarak, T., Puzzer, T., Conibeer, G. and Corkish, R., “ALL-SILICON TANDEM CELLS BASED ON “ARTIFICIAL” SEMICONDUCTOR SYNTHESISED USING SILICON QUANTUM DOTS IN A DIELECTRIC MATRIX”, 20th European Photovoltaic Solar Energy Conference, 6, Barcelona, Spain, June 2005.
5. D.J. Lockwood, et al. Silicon Photonics II. Topics in Applied Physics, 119, (2011), 131.
6. Andreas W. Bett, et al. “HIGHEST EFFICIENCY MULTI-JUNCTION CELL FOR TERRESTRIAL AND SPACE APPLICATIONS”, 24th European Photovoltaic Solar Energy Conference and Exhibition, 21, Hamburg, Germany, September 2009.
7. G. Conibeer, et al. “Silicon quantum dot nanostructures for tandem photovoltaic cells”, Thin Solid Films, 516, (2008), 6748.
8. Michael J Burns and Paul M Chaikin, “Interaction effects and thermoelectric power in low-temperature hopping”, J. Phys. C: Solid State Phys. 18 (1985) L74.
9. P. F. Trwoga, et al. “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters”, J. Appl. Phys., 83, (1998), 3789.
10. A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys., 42, (1993), 173.
11. L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys., 80, (1984), 4403.
12. Tae-Wook Kim, et al. “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., 88, (2006), 123102.
13. Shinji Takeoka, et al. “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime”, Phys. Rev. B , 62, (2000), 16820.
14. Tae-Youb Kim, et al. “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., 85, (2004), 5355.
15. Moon-Seung Yang, et al. “Effect of nitride passivation on the visible photoluminescence from Sinanocrystals”, Appl. Phys. Lett., 85, (2004), 3408.
16. W. Boonkosum, et al. “Amorphous SiO:H thin film visible light emitting diode”, J. Non-Cryst. Solids, 198, (1996), 1226.
17. L. Pavesi, et al. “Optical gain in silicon nanocrystals”, NATURE, 408, (2000), 440.
18. Sandip Tiwari, et al. “A silicon nanocrystals based memory”, Appl. Phys. Lett., 68, (1996), 1377.
19. L.A. Nesbit, “Annealing characteristics of Si-rich SiO2 films”, Appl. Phys. Lett., 46, (1985), 38.
20. J. F. Tong, et al. “Adjustable emissions from silicon-rich oxide films prepared by plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett., 74, (1999), 2316.
21. Gustavo M. Dalpian and James R. Chelikowsky, “Self-Purification in Semiconductor Nanocrystals”, Phys. Rev. Lett., 96, (22006), 226802.
22. G. Cantele, et al. “First-principles study of n- and p-doped silicon nanoclusters”, Phys. Rev. B , 72, (2005), 113303.
23. David J. Norris et al. “Doped Nanocrystals”, Science, 319, (2008), 1776.
24. Young Suk Kim, et al. “Effects of N2 plasma treatment of titanium nitride/borophosphosilicate glass patterned substrates on metal organic chemical vapor deposition of copper”, Thin Solid Films, 349, (1999), 36.
25. Eun-Chel Cho, et al. “Silicon quantum dot/crystalline silicon solar cells”, Nanotechnology., 19, (2008), 245201.
26. X.J. Hao, et al. “Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 1524.
27. X. D. Pi, et al. “Light emission from Si nanoclusters formed at low temperatures”, Appl. Phys. Lett., 88, (2006), 103111.
28. Tsutomu Shimizu-Iwayama, et al. “Optical properties of silicon nanoclusters fabricated by ion implantation”, J. Appl. Phys., 83, (1998), 6018.
29. Z. H. Cen, et al. “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions”, Appl. Phys. Lett., 94, (2009), 041102.
30. Z. H. Cen, et al. “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix”, Appl. Phys. Lett., 93, (2008), 023122.
31. A. Hofgen, et al. “Annealing and recrystallization of amorphous silicon carbide produced by ion implantation”, J. Appl. Phys., 84, (1998), 4769.
32. N.M. Park, et al. “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phys. Rev. Lett., 86, (2001), 1355.
33. A. Sa’ar, et al. “Resonant Coupling between Surface Vibrations and Electronic States in Silicon Nanocrystals at the Strong Confinement Regime”, 5, (2005), 2443.
34. Z.H. Lu, et al. “Quantum confinement and light emission in SiO2/Si superlattices”, Nature, 378, (1995), 258.
35. Jian Zi, rt al. “Raman shifts in Si nanocrystals”, Appl. Phys. Lett., 69, (1996), 200.
36. X.J. Hao, et al.” Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix”, Thin Solid Films, 517, (2009), 5646.
指導教授 陳一塵(I-chen Chen) 審核日期 2012-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明