博碩士論文 993209009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.231.228.109
姓名 胡哲源(Zhe-yuan Hu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
(The Effects of Metal (Ce, Co and Sn) Chlorides and Oxides Additives on the Enhancement of the Dehydrogenation Characteristics for LiBH4)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 硼氫化鋰(LiBH4)由於具有相當高的理論氫氣儲存量(18.4 wt%),而成為一具有潛力的儲氫材料。然而,其起始及主要的脫氫高達560及750 K,因此目前許多的研究皆致力於使用動力學或者熱力學的改質方法促進其脫氫特性。在本研究中,LiBH4的脫氫特性將藉由添加不同的金屬(鈰(Ce)、鈷(Co)、錫(Sn))氯化物、氧化物以及碳支撐的金屬氧化物加以改質,而自行製備的碳支撐金屬氧化物用X光粉末繞射儀(XRD)和熱重分析儀(TGA)來鑑定其結構組成和金屬氧化物的承載量,並以程式溫控還原系統(TPR)及程式溫控脫氫質譜儀(TPD-MS)加以分析樣品的脫氫性質、以X光近緣結構(XANES)來鑑定添加物脫氫前後之金屬氧化態的變化。
由實驗結果可發現,LiBH4樣品的脫氫特性可以透過參雜33 wt%的各種添加物加以改善,其中含有金屬Co的添加物最能有效的降低LiBH4的動力學障礙,無論其為氯化物或氧化物的狀態。以添加氯化鈷和氧化鈷的樣品之主要脫氫溫度下降至564 和468 K且脫氫量分別可達14.5和15.5 wt%而有較佳的改質結果。
添加金屬氯化物與氧化物於LiBH4中,確實能有效的改善其原本脫氫特性。其中金屬氯化物的添加,會使系統產生一些離子交換反應,進而在反應過程中產生不穩定的金屬硼氫化物,使得脫氫溫度能夠下降;而在添加金屬氧化物的系統中,則因為氧化還原反應而能有效的改善整體的脫氫特性。另一方面,對於碳支撐的金屬氧化物添加,除了碳支撐的氧化鈰樣品之外,其餘的樣品的起始脫氫溫度都能大幅的下降,但也造成脫氫量的降低,而其改質機制推測是LiBH4和金屬氧化物在球磨的過程中會透過碳材來增加其接觸表面積而形成一種複合材料使得脫氫溫度降低。此外,XANES圖譜結果顯示脫氫過程中金屬氯化物和LiBH4之間發生還原反應,從而促進了脫氫反應。
摘要(英) LiBH4 is a potential hydrogen storage material and gains lots of interests recently due to its extremely high hydrogen capacity (18.4 wt%). However, the initial decomposition (Ti) and main dehydrogenation temperatures (Tm) of LiBH4 are as high as 560 and 750 K, respectively. In order to overcome the drawbacks, several approaches have been developed to modify the system thermodynamically or kinetically. In this study, the effects of metal chlorides (CeCl3, CoCl2 and SnCl2), metal oxides (CeO2, CoO and SnO2), and carbon supported metal oxides (CeO2/C, CoO/C and SnO2/C) additions on promoting the dehydrogenation properties of LiBH4 have been investigated. The structures and metal oxides loadings of as-prepared CeO2/C, CoO/C and SnO2/C additives are measured by X-ray diffraction (XRD) and thermal gravimetric analysis (TGA), respectively. Furthermore, the dehydrogenation behavior of the fresh and modified LiBH4 is analyzed by temperature programmed reduction (TPR) and temperature programmed desorption–mass spectrometer (TPD-MS). Besides, X-ray absorption near-edge structure (XANES) is applied to detect the oxidation states of additives before and after dehydrogenation.
Based on the results, it can be observed that the dehydrogenation properties of the LiBH4 can be successfully improved by doping 33 wt% of metal chlorides, metal oxides and carbon supported metal oxides. Among the three different systems, the metal Co shows the best performance in reducing the reaction kinetic barrier of LiBH4 whether it is in chloride or oxide forms. CoCl2 and CoO doped samples have the Tm to 564 and 486 K with the capacity as 14.5 and 15.5 wt%, respectively.
In terms of various metal (Ce, Co and Sn) chlorides and oxides modified LiBH4, the improvement of the dehydrogenation properties can both be observed. For the metal chlorides modified samples, the enhancement may be due to some ion exchange reactions and then formation of the unstable transition metal borohydrides during the heating process. On the other hand, for metal oxides doped samples, the promotion may be ascribed as the effects of reduction reactions during the decomposition processes. In terms of the LiBH4 modified by carbon supported metal oxides, although the Ti can dramatically reduce except LiBH4/CeO2(C)-2, their capacities also conspicuously reduce. It is speculated that the promotion effect is owing to the increased contact area and formation of composite material between metal oxides and LiBH4 during the ball-milling process. Moreover, the XANES results show the reduction reaction between metal chlorides and LiBH4 during the dehydrogenation process occurs, which promotes the dehydrogenation reaction.
關鍵字(中) ★ 主要脫氫溫度
★ 錫)氧化物
★ 脫氫特性
★ 金屬(鈰
★ 鈷
★ 金屬(鈰
★ 錫)氯化物
★ 硼氫化鋰
★ 起始脫氫溫度
★ 程式溫控脫氫質譜儀
★ X光近緣結構
★ 鈷
關鍵字(英) ★ LiBH4
★ main dehydrogenation temperature (Tm)
★ TPD-MS (temperature programmed dehydrogenation-m
★ dehydrogenation properties
★ metal (Ce
★ Co and Sn) chlorides
★ metal (Ce
★ Co and Sn) oxides
★ initial dehydrogenation temperature (Ti)
★ X-ray absorption near-edge structu
論文目次 摘要……………………………………………………………………….I
Abstract………………………………………………………………...III
誌謝……………………………………………………………………...V
Table of Contents……………………………………………………..VII
List of Figures………………………………………………………….XI
List of Tables………………………………………………………….XV
Chapter I Introduction …………………………………………………1
1. Hydrogen energy……………………………………………………2
2. Hydrogen storage……………………………………………………3
2.1 Traditional metal hydrides……………………………..5
2.2 Chemical hydrides………………………………………6
2.3 Complex hydrides……………………………………….6
3 The LiBH4 system………………………………………………….10
3.1 LiBH4…………………………………………………...10
3.2 The modification of LiBH4 system by metal halides...10
3.3 The modification of LiBH4 system by carbon materials………………………………………………..15
3.4 The modification of LiBH4 system by metal oxides….17
4 Motivation of this study…………………………………………...20
Chapter Ⅱ Experimental procedure ………………………………..22
1. Preparation of materials…………………………………………..22
1.1 LiBH4…………………………………………………...22
1.2 Metal chlorides…………………………………………22
1.3 Metal oxides……………………………………………22
1.4 Carbon supported metal oxides………………………22
1.5 Ball-milling of materials………………………….……23
2 Characterization of modified materials…………………….…….26
2.1 X-ray powder diffraction (XRD)………………….…..26
2.2 Temperature programmed reduction (TPR)…………26
2.3 Temperature programmed dehydrogenation–mass spectrometer (TPD-MS)……………………………..29
2.4 X-ray absorption near-edge structure (XANES)…….29
Chapter III Results and Discussion…………………………………..31
1. The effect of CeCl3, CoCl2 and SnCl2 additives on the dehydrogenation properties of LiBH4…………………………….32
1.1 The effect of CeCl3 additives on the dehydrogenation properties of LiBH4……………………………………32
1.1.1 The TPR analysis of the dehydrogenation characteristics…………………………………….32
1.1.2 The XRD analyses of LiBH4/CeCl3 composites...34
1.2 The effect of CoCl2 additives on the dehydrogenation properties of LiBH4……………………………………36
1.2.1 The TPR analysis of the dehydrogenation characteristics…………………………………….36
1.2.2 The XRD analyses of LiBH4/CoCl2 composites...39
1.3 The effect of SnCl2 additives on the dehydrogenation properties of LiBH4………………………………….41
1.3.1 The TPR analysis of the dehydrogenation characteristics…………………………………….41
1.3.2 The XRD analyses of LiBH4/SnCl2 composites…….......................................................41
1.4 The TPD-MS analysis of the dehydrogenation characteristic for LiBH4 modified by metal chlorides………………………………………………..45
2. The effect of metal (Ce, Co and Sn) oxides on the dehydrogenation properties of LiBH4…………………………….49
2.1 The effect of CeO2 additives on the dehydrogenation properties of LiBH4………………………………….49
2.1.1 The TPR analysis of the dehydrogenation characteristics…………………………………….49
2.1.2 The XRD analyses of LiBH4/CeO2 composites…52
2.2 The effect of CoO additives on the dehydrogenation properties of LiBH4………………………………….52
2.2.1 The TPR analysis of the dehydrogenation characteristics…………………………………….52
2.2.2 The XRD analyses of LiBH4/CoO composites….56
2.3 The effect of SnO2 additives on the dehydrogenation properties of LiBH4………………………………….56
2.3.1 The TPR analysis of the dehydrogenation characteristics…………………………………….56
2.3.2 The XRD analyses of LiBH4/SnO2 composites…60
2.4 The TPD-MS analysis of the dehydrogenation characteristic of for LiBH4 modified by metal oxides.62
3. The effect of CeO2/C, CoO/C and SnO2/C additives on the dehydrogenation properties of LiBH4…………………………….64
3.1 The XRD characterization of prepared carbon supported metal oxides……………………………...64
3.2 The TGA analysis of the metal oxides………………...64
3.3 The TPR analysis of the dehydrogenation characteristics………………………………………….67
3.4 The TPD-MS analysis of the dehydrogenation characteristic of for LiBH4 modified by carbon support metal oxides…………………………………..71
4. The comparison of the dehydrogenation of LiBH4 modified by all additives…………………………………………………………….73
4.1 The XANES analyses of CoCl2, CeCl3, and SnCl2 modified LiBH4 composites………………………….73
4.2 The comparison of the dehydrogenation characteristics………………………………………….78
Chapter IV Conclusions……………………………………………….84
References………………………………………………………………86
參考文獻 [1] A. Züttel, A. Remhof, A. Borgschulte and O. Friedrichs, Phil. Trans. R. Soc. A 386 (2010) 3329.
[2] A. Züttel, Mater. Today (2003) 24.
[3] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, and C. Emmenegger, J. Power Sources 118 (2003) 1.
[4] A. Züttel, Naturwissenschaften 91 (2004) 157.
[5] L. Schlapbach and A. Züttel, Nature 414 (2001) 353.
[6] W. Luo, J. Alloys Compd. 381 (2004) 284.
[7] M. H. Mendelsohn, D. M. Gruen, and A. E. Dwight, Nature 269 (1977) 45.
[8] U.S. Department of Energy, Office of Basic Energy Science: Basic Research Needs for the H2 Economy, Report of BES Workshop on H2 Production, Storage and Use, Argonne National Laboratory, May 13-15, 2003.
[9] C. Weidenthaler and M. Felderhoff, Energy Environ. Sci. 4 (2011) 2495.
[10] U. B. Demirci and P. Miele, Energy Environ. Sci. 4 (2011) 3334.
[11] F. H. Stephens, V. Pons and R. T. Baker, Dalton Trans. (2007) 2613.
[12] K. J. Fijakowski and W. Grochala, J. Mater. Chem. 19 (2009) 2043.
[13] T. B. Marder, Angew. Chem. Int. Ed. 46 (2007) 8116.
[14] Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw., A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, Nat. Mater. 7 (2008) 138.
[15] D. J. Heldebrant, A. Karkamkar, J. C. Linehan and T. Autrey, Energy Environ. Sci. 1 (2008) 156.
[16] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, Chem. Rev. 107 (2007) 4111.
[17] J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, Chem. Soc. Rev. 39 (2010) 656.
[18] J. Graetz, Chem. Soc. Rev. 38 (2009) 73.
[19] T. Umegaki, J. M. Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, and Q. Xu, Int. J. Hydrogen Energy 34 (2009) 2303.
[20] A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, and C. Emmenegger, J. Alloys Compd. 356 (2003) 515.
[21] B. Bogdanovic and M. Schwickardi, J. Alloys Compd. 253 (1997) 1.
[22] W.E. Garner and E.W. Haycock, Proc. R. Soc. A211 (1952) 335.
[23] P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Nature 420 (2002) 303.
[24] S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, and A. Züttel, J. Alloys Compd. 404 (2005) 427.
[25] A. Züttel, A. Borgschulte, and S. Orimo, Scr. Mater. 56 (2007) 823.
[26] H. J. Schlesinger and H. C. Brown, J. Am. Chem. Soc. 62 (1940) 3429.
[27] Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, and S. Orimo, Phys. Rev. B 74 (2006) 045126.
[28] H. Li, Y. Yan, S. Orimo, A. Züttel, and C. M. Jensen, Energies 4 (2011) 185.
[29] M. Au, W. Spencer, A. Jurgensen, and C. Zeigler, J. Alloys Compd. 462 (2008) 303.
[30] Z. Z. Fang, X. D. Kang, Z. X. Yang, G. S. Walker, and P. Wang, J. Phys. Chem. C 115 (2011) 11839.
[31] R. A. Varin and L. Zbroniec, Int. J. Hydrogen Energy 35 (2010) 3588.
[32] F. Fang, Y. Li, Y. Song, D. Sun, Q. Zhang, L. Ouyang, and M. Zhu, J. Phys. Chem. C 115 (2011) 13528.
[33] T. Sun, H. Wang, Q. Zhang, D. Sun, X. Yao, and M. Zhu, J. Mater. Chem. 21 (2011) 9179.
[34] G. L. Xia, H. Y. Leng, N. X. Xu, Z. L. Li, Z. Wu, J. L. Du, and X. B. Yu, Int. J. Hydrogen Energy 36 (2011) 7128.
[35] Y. Jiang and B. H. Liu, J. Alloys Compd. 509 (2011) 9055.
[36] M. Au, A. Jurgensen, and K. Zeigler, J. Phys. Chem. B 110 (2006) 26482.
[37] B. J. Zhang, B. H. Liu, and Z. P. Li, J. Alloys Compd. 509 (2011) 751.
[38] F.C. Gennari and M.R. Esquivel J. Alloys Compd. 485 (2009) L47.
[39] B. J. Zhang and B. H. Liu, Int. J. Hydrogen Energy 35 (2010) 7288.
[40] Y. Nakamori, H. W. Li, M. Matsuo, K. Miwa, S Towata, and S. Orimo, J. Phys. Chem. Solids 69 (2008) 2292.
[41] Y. H. Guo, X. B. Yu, L. Gao, G. L. Xia, Z. P. Guo, and H. K. Liu, Energy Environ. Sci. 3 (2010) 465.
[42] H. W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, and A. Zuttel, J. Alloys Compd. 446 (2007) 315.
[43] Z. Z. Fang, P. Wang, T. E. Rufford, X. D. Kang, G. Q. Lu, and H. M. Cheng, Acta Mater. 56 (2008) 6257.
[44] Z. Z. Fang, X. D. Kang, P. Wang, and H. M. Cheng, J. Phys. Chem. C 112 (2008) 17023.
[45] Z. Z. Fang, X. D. Kang, and P. Wang, Int. J. Hydrogen Energy 35 (2010) 8247.
[46] Z. Z. Fang, X. D. Kang, H. B. Dai, M. J. Zhang, P. Wang, and H. M. Cheng, Scripta Mater. 58 (2008) 922.
[47] X. B. Yu, D. M. Grant, and G. S. Walker, J. Phys. Chem. C 112 (2008) 11059.
[48] X. B. Yu, D. M. Grant, and G. S. Walker, J. Phys. Chem. C 113 (2009) 17945.
[49] M. Au and A. Jurgensen, J. Phys. Chem. B 110 (2006) 7062.
[50] M. Au and R. T. Walters, Int. J. Hydrogen Energy 35 (2010) 10311.
[51] C. Li, P. Peng, D. W. Zhou, and L. Wan, Int. J. Hydrogen Energy 36 (2011) 14512.
[52] M. S. Wellons, P. A. Berseth, and R. Zidan, Nanotechnology 20 (2009) 204022.
[53] J. Xu, X. B. Yu, Z. Zou, Z. Li, Z. Wu, D. L. Akins, and H. Yang, Chem. Commun. (2008) 5740.
[54] J. Xu, X. B. Yu, J. Ni, Z. Zou, Z. Lia, and H. Yang, Dalton Trans. (2009) 8386.
[55] A. F. Gross, J. J. Vajo, S. L. V. Atta, and G. L. Olson, J. Phys. Chem. C 112 (2008) 5651.
[56] P. Choudhury, S. S. Srinivasan, V. R. Bhethanabotla, Y. Goswami, K. McGrath, and E. K. Stefanakos, Int. J. Hydrogen Energy 34 (2009) 6325.
[57] J. Yang, A. Sudik, and C. Wolverton, J. Phys. Chem. C 111 (2007) 19134.
[58] X. Zheng, G. Wu, W. Li, Z. Xiong, T. He, J. Guo, H. Chen, and P. Chen, Energy Environ. Sci. 4 (2011) 3593.
[59] R. J. Wu, J. G. Wu, T. K. Tsai, and C. T. Yeh, Sens. Actuators B 120 (2006) 104.
[60] J. M. Chen, J. K. Simons, K. H. Tan, and R. A. Rosenberg, Phys. Rev. B 48 (1993) 10047.
[61] A. Bianconi, A. D. Cicco, N. V. Pavel, M. Benfatto, A. Marcelli, C. R. Natoli, P. Pianetta, and J. Woicik, Phys. Rev. B 36 (1987) 6426.
[62] J. Garcia, M. Benfatto, C. R. Natoli, A. Bianconi, I. Davoli, and A. Marcelli, Solid State Commun. 58 (1986) 595.
[63] M. D. Hall, G. J. Foran, M. Zhang, P.J. Beale, and T. W. Hambley, J. Am. Chem. Soc. 125 (2003) 7524.
[64] T. W. Capehart, R. K. Mishra, and J. F. Herbst, J. Appl. Phys. 72 (1992) 676.
[65] G. Kaindl, G. K. Wertheim, G. Schmiester, and E. V. Sampathkumaran, Phys. Rev. Lett. 58 (1987) 606.
[66] A. Leon, J. Rothe, K. Chlopek, O. Zabara, and M. Fichtner, Phys. Chem. Chem. Phys. 11 (2009) 8829.
指導教授 王冠文(Kuan-wen Wang) 審核日期 2012-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明