博碩士論文 993209011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.145.2.184
姓名 曾建堯(Chien-yao Tseng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
(Synthesis and Properties Characterization of Iron Based Bulk Metallic Glass Composites with Ex-situ Tantalum Particles Dispersed Reinforcement)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究
★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究
★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於鋼鐵材料被廣泛地使用於各個領域,鐵基非晶質合金,亦可稱之為非晶質鋼材,其數十年來一直是非晶質合金材料的研究重點之一。鐵基金屬玻璃與鋯基或鈀基非晶質合金相比之下,價格低廉的特色向來是其最具吸引力之處,但可惜的是,如此的材料卻往往因為缺乏塑性而限制了其應用範疇。為了解決鐵基金屬玻璃塑性不佳的問題,本研究成功利用真空銅模傾鑄法製作出含有外添加鉭顆粒強化的鐵基非晶質複合合金。經由壓縮試驗與硬度量測,我們發現添加13vol. %鉭顆粒塊材的塑性變形量可延展至6.43%,其破裂韌性更可增加至139.4MPa m0.5,破裂應力也高達3.18GPa,而其破裂面與施力方向的夾角為38.8度,若以未添加顆粒的非晶質合金與之相比,後者不具任何的塑性表現。根據掃描式電子顯微儀觀測分析後發現,異質相顆粒於鑄造過程中發生尺寸細化的現象,而細化後之顆粒有助於阻擋微裂隙的前進,並提升複材的機械性質。但是,鉭元素的添加會於鑄造過程中形成碳化鉭,而碳化鉭高硬度與高彈性係數的特性,最終將對材料的塑性產生危害。本研究的成果有助於瞭解使用外添加鉭顆粒對鐵基非晶質基地產生的影響與強化效果。
摘要(英) Due to the widely used of steel, Fe-based amorphous alloy, also known as amorphous steel, is being studied by many researchers. Comparing to Zr- and Pt-based amorphous alloys, the cost of Fe-based amorphous alloy is the most attracting characteristic, especially. Unfortunately, the lack of plasticity of such material limits its application severely. According to such situation, the ex-situ method is applied in this study where the Fe-based bulk metallic glass composites Fe77Mo5P9C7.5B1.5 was casted with different amount of ex-situ Ta particles addition as the reinforcing phase by tilt mold casting in argon atmosphere. These composite alloys were examined by applying compression loading and indentation so the corresponding mechanical properties were then acquired. The BMG composite with 13vol. % Ta particles possessing a fracture toughness of 139.4 MPa m0.5 can sustain a plastic strain to failure of 6.43% at compressive fracture strength as high as 3.18GPa where the angle between the compressive shear plane and loading axis is ~38.8° while zero plasticity without reinforcing phase particles being distributed. Depending on SEM observation and analysis, the heterogeneous phase particles dispersing in the matrix decreased own sizes after casting which hold better performance to stop the propagation of micro-cracks. However, the formation of tantalum carbide which processing larger hardness and elastic modulus reduced the fraction of ductile Ta phase and thus harmed the plasticity eventually. The results of this study tended to solve the problems of fast propagation of shear bands and micro-cracks in Fe-based BMGs further providing an effective solution to improve the plasticity.
關鍵字(中) ★ 複合材料
★ 散布強化
★ 金屬玻璃
關鍵字(英) ★ Composite
★ Dispersion Strengthening
★ Metallic Glasses
論文目次 中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii
總目錄 ……………………………………………………………………iii
表目錄 ……………………………………………………………………vii
圖目錄 ……………………………………………………………………viii
一、 前言………………………………………………………………1
二、 實驗原理…………………………………………………………3
2-1 塊狀非晶質合金發展簡介………………………………………3
2-2 非晶質合金之種類………………………………………………5
2-3 非晶質合金的設計與製作………………………………………6
2-3-1 實驗歸納法則……………………………………………6
2-3-2 非晶質合金相關製程介紹………………………………7
2-3-3 微量元素的添加與其影響………………………………10
2-4 塊狀非晶質合金複材的發展……………………………………11
2-5 非晶質合金之性質………………………………………………12
2-5-1 機械性質…………………………………………………12
2-5-1-1 自由體積…………………………………………….12
2-5-1-2 剪切轉換區………………………………………….13
2-5-1-3破裂行為與表現……………………………………..14
2-5-2 熱力學性質………………………………………………15
2-5-2-1熱穩定性……………………………………………..15
2-5-2-2玻璃形成能力………………………………………..16
2-5-3 耐腐蝕性質………………………………………………18
三、 實驗方法………………………………………………………….20
3-1 實驗目的………………………………………………………….20
3-2 合金製作………………………………………………………….21
3-2-1 合金配置…………………………………………………21
3-2-2 合金熔煉…………………………………………………21
3-2-3 粉末添加…………………………………………………22
3-2-4 非晶質棒材製作………………………………………….22
3-3 實驗分析………………………………………………………….23
3-3-1 成份分析…………………………………………………23
3-3-1-1 成份分析試片製作………………………….…..23
3-3-1-2 成份分析量測…………………………………….23
3-3-1-2-1 能量散布光譜儀……………………………23
3-3-1-2-2 波長散布光譜儀……………………………24
3-3-2 微結構觀測分析…………………………………………24
3-3-2-1 XRD與SEM試片製作……………………………..24
3-3-2-2 X光繞射分析儀……………………………..……24
3-3-2-3 掃瞄式電子顯微鏡……………………………….25
3-3-2-3-1 二次電子(secondary electron)影像………...25
3-3-2-3-2 背向散射電子(BSE)影像…………………..25
3-3-3 機械性質分析……………………………………………26
3-3-3-1 硬度與破壞韌性量測………………………….…26
3-3-3-1-1 試片製作……………………………………26
3-3-3-1-2 維氏硬度……………………………………26
3-3-3-1-3 破壞韌性……………………………………26
3-3-3-2 抗壓強度與塑性量測……………………………27
3-3-3-2-1 試片製作……………………………………27
3-3-3-2-2 壓縮試驗……………………………………28
3-3-4 熱性質分析…………………………………………….28
3-3-4-1 試片製作…………………………………….….28
3-3-4-2 等速率升溫測試………………………………..28
四、 結果與討論………………………………………………………30
4-1 Fe77Mo5P9C7.5B1.5非晶質合金性質分析……………….…….…30
4-2 添加鉭顆粒之Fe77Mo5P9C7.5B1.5非晶質合金複材性質分析……33
五、 結論………………………………………………………………39
參考文獻………………………………………………………………….40
表目錄
表2-1 常見非晶質合金系統…………………………………………49
表2-2 非晶質合金的分類……………………………………………49
表2-3 非晶質合金的分類……………………………………………50
表4-1 Fe77Mo5P9C7.5B1.5 EPMA成份分析結果……………………..50
表4-2 Fe77Mo5P9C7.5B1.5 基本熱性質………………………………..50
表4-3 Fe77Mo5P9C7.5B1.5 BMGC機械性質數據……………………..51
表4-4 添加之鉭顆粒於棒材中實際分布的比例與尺寸……………51
表4-5 粒徑10μm以上之鉭顆粒尺寸與比例統計………………….52
表4-6 鉭元素與Fe77Mo5P9C7.5B1.5合金各元素混合熱一覽………..52
表4-7 α相鐵於非晶質合金複材中的比例………………………….52
圖目錄
圖2-1 splat-quenching示意圖………………………………………...53
圖2-2 活塞壓擊急冷設備……………………………………………..53
圖2-3 原子簇堆疊方式………………………………………………..54
圖2-4 非晶質合金的機械性質………………………………………..54
圖2-5 非晶質合金抗壓與抗拉時的差異……………………………..55
圖3-1 實驗流程圖……………………………………………………..55
圖3-2 真空氬焊機……………………………………………………..56
圖3-3 慢速切割機……………………………………………………..56
圖3-4 金相研磨機……………………………………………………..57
圖3-5 場發射雙束型聚焦離子束顯微鏡……………………………..57
圖3-6 電子微探儀……………………………………………………..58
圖3-7 X光繞射分析儀………………………………………………..58
圖3-8 維式硬度儀……………………………………………………..59
圖3-9 抗壓試驗夾具…………………………………………………..59
圖3-10 萬能試驗機……………………………………………………..60
圖3-11 熱差掃瞄分析儀………………………………………………..60
圖3-12 維式壓痕與破裂韌性量測……………………………………..61
圖4-1 Fe77Mo5P9C7.5B1.5非晶質合金薄帶於不同升溫速率下之熱差分析曲線………………………………………………………………….…62
圖4-2 Fe77Mo5P9C7.5B1.5 非晶質合金薄帶高溫熱差分析曲線……………………………………………...…………………..63
圖4-3 Fe77Mo5P9C7.5B1.5 非晶質合金塊材與薄帶於相同升溫速率下熱性質差異………………..…………………………………………….63
圖4-4 Fe77Mo5P9C7.5B1.5 基材X光繞射圖形……………………………...64
圖4-5 Fe77Mo5P9C7.5B1.5 基材背向散射電子影像………………………64
圖4-6 銅模鑄造Fe77Mo5P9C7.5B1.5非晶質複合棒材………………...65
圖4-7 不同鉭顆粒添加比例Fe77Mo5P9C7.5B1.5 BMGC抗壓試驗結果一覽…………………………………………………………………65
圖4-8 Fe77Mo5P9C7.5B1.5 + 0 vol. %Ta 荷重50Kg壓痕SEM影像…….66
圖4-9 Fe77Mo5P9C7.5B1.5 + 7.5 vol. %Ta 荷重50Kg壓痕SEM影像…..66
圖4-10 Fe77Mo5P9C7.5B1.5 + 10 vol. %Ta 荷重50Kg壓痕SEM影像……67
圖4-11 Fe77Mo5P9C7.5B1.5 + 13 vol. %Ta 荷重50Kg壓痕SEM影像……67
圖4-12 Fe77Mo5P9C7.5B1.5 + 15 vol. %Ta 荷重50Kg壓痕SEM影像……68
圖4-13 Fe77Mo5P9C7.5B1.5 + 7.5 vol. %Ta背向散射電子影像…………68
圖4-14 Fe77Mo5P9C7.5B1.5 + 10 vol. %Ta背向散射電子影像………….69
圖4-15 Fe77Mo5P9C7.5B1.5 + 13 vol. %Ta背向散射電子影像………….69
圖4-16 Fe77Mo5P9C7.5B1.5 + 15 vol. %Ta背向散射電子影像………….70
圖4-17 不同鉭顆粒添加比例之Fe77Mo5P9C7.5B1.5 BMGC板材熱性質差異………………………………………………………………..71
圖4-18 不同顆粒添加比例之Fe77Mo5P9C7.5B1.5 BMGC棒材之XRD圖形………………………………………………………………..72
圖4-19 Fe77Mo5P9C7.5B1.5 + 7.5 vol. %Ta背向散射電子影像…………73
圖4-20 Fe77Mo5P9C7.5B1.5 + 10 vol. %Ta背向散射電子影像………….73
圖4-21 Fe77Mo5P9C7.5B1.5 + 13 vol. %Ta背向散射電子影像………….74
圖4-22 Fe77Mo5P9C7.5B1.5 + 15 vol. %Ta背向散射電子影像………….74
圖4-23 不同顆粒添加比例之Fe77Mo5P9C7.5B1.5 BMGC板材之XRD圖形………………………………………………………………..75
圖4-24 棒材碎片比較,左方為基材,右方為具有13vol. %鉭顆粒添加………………………………………………………………..75
圖4-25 具13vol. %顆粒添加之棒材破斷面(側面)……………………76
圖4-26 具13vol. %顆粒添加之棒材破斷面(側緣)……………………76
圖4-27 具13vol. %顆粒添加之棒材破斷面,棒材邊緣破裂起始處……..77
圖4-28 具13vol. %顆粒添加之棒材破斷面,棒材中心……………..77
參考文獻 [1] Johnson W L. Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Mater Sci Forum(1996), 225, 35.
[2] Inoue A, Koshiba H, Zhang T, Makino A. Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys. J Appl Phys(1998), 83, 1967.
[3] Inoue A, Hashimoto K. Advances in Materials Research-”Amorphous and Nano-crystalline Materials-Preparation, Properties, and Applications,” Springer (2001).
[4] Chieh T C, Chu J, Liu C T, Wu J K. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions. Mater Lett(2003), 57, 3022.
[5] Inoue A, Koshiba M, Makino A. Ferromagnetic Co–Fe–Zr–B amorphous alloys with glass transition and good high-frequency permeability. Appl Phys Lett(1998), 73, 744.
[6] Stoica M, Eckert J, Roth S, Yavari A R, Schultz L. Fe65.5Cr4Mo4Ga4P12C5B5.5 BMGs: Sample preparation, thermal stability and mechanical properties. J Alloy Compd(2007), 434, 171.
[7] Zhang T, Liu F J, Pang S J, Li R. Ductile Fe-Based Bulk Metallic Glass with Good Soft-Magnetic Properties. Mater Trans(2007), 48, 1157.
[8] Du X H, Huang J C, Hsieh K C, Lai Y H, Chen H M, Jang J S C, Liaw P K. Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy. Intermet(2009), 17, 607.
[9] Jang J S C, Jian S R, Pan D J, Wu Y H, Huang J C, Nieh T G. Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles. Intermet(2010), 18, 560.
[10] Guo S F, Liu L, Li N, Li Y. Fe-based bulk metallic glass matrix composite with large plasticity. Scr Mater(2010), 62, 329.
[11] Klement W, Willens R H, Duwez P. Noncrystalline structure in solidified gold-silicon alloys. Nature(1960), 187, 869.
[12] Jones H. Splat cooling and metastable phases. Rep Prog Phys(1973), 36, 1425.
[13] Ruhl R C. Cooling rates in splat cooling. Mater Sci Eng(1967), 1, 313.
[14] Pietrowsky P. Novel Mechanical Device for Producing Rapidly Cooled Metals and Alloys of Uniform Thickness. Rev Sci Instrum(1963), 34, 445.
[15] Chen H S, Miller C E. A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids. Rev Sci Instrum(1970), 41, 1237.
[16] Chen H S, Leamy H J, Miller C E. Preparation of glassy metals. Ann Rev Mater Sci(1980), 10, 363.
[17] Chen H S. Glassy metals. Rep Prog Phys(1980), 43, 353.
[18] Inoue A, Zhang T, Masumoto T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Mater trans(1990), JIM, 31, 425.
[19] Zhang W, Zhang Q S, Qin C L, Inoue A. Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability. Mater Sci Eng(2008), B148, 92.
[20] Inoue A, Nishiyama N, Kimura H M. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter. Mater Trans(1997), JIM, 38, 179.
[21] Kato H, Wada T, Hasegawa M, Saida J, Inoue A. Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability. Scr Mater(2006), 54, 12, 2023.
[22] Zheng Q, Xu J, Ma E. High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J Appl Phys(2007), 102, 113519.
[23] Li R, Pang S, Ma C, Zhang T. Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Mater(2007), 55, 3719.
[24] Zeng Y Q, Nishiyama N, Inoue A. Development of Ni-Pd-P-B Bulk Metallic Glasses with High Glass-Forming Ability. Mater Trans(2009), JIM, 50, 1243.
[25] Zhang Q S, Zhang W, Inoue A. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting. Mater Trans(2007), 48, 629.
[26] Ponnambalam V, Poon S J, Shiflet G J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res(2004), 19, 1320.
[27] Amiya K, Inoue A. Fe-(Cr,Mo)-(C,B)-Tm Bulk Metallic Glasses with High Strength and High Glass Forming Ability. Rev Adv Mater Sci(2008), 18, 27.
[28] Zhu S L, Wang X M, Inoue A. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermet(2008), 16, 1031.
[29] Bernal J D. Packing of Spheres: Co-ordination of Randomly Packed Spheres. Nature(1960), 185, 68.
[30] Gaskell P H. A new structural model for transition metal-metalloid glasses. Nature(1978), 276, 484.
[31] Inoue A, Negishi T, Kimura H M, Zhang T, Yavari A R. High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys. Mater Trans(1998), JIM 39, 318.
[32] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E. Icosahedral Short-Range Order in Amorphous Alloys. Phys Rev Lett(2004), 92, 145502.
[33] Miracle D B. A structural model for metallic glasses. Nat Mater(2004), 3, 697.
[34] Shen H W, Luo W K, Alamgir F M, Bai J M, Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature(2006), 439, 419.
[35] Chen M W. Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annu Rev Mater Res(2008), 38, 14.
[36] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater(2011), 59, 2243.
[37] Miller M, Liaw P. Springer, “Bulk Metallic Glasses-An Overview.”(2008)
[38] Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Mater Trans(1995), JIM, 36, 7, 866.
[39] David R. Gaskell, “Introduction to the Thermodynamics of Materials,” Fourth Edition, 251.
[40] Reed-Hill R E, Abbaschian R. PWS, “Physical Metallurgy Principles,” Third Edition(1994), 278.
[41] Afonso C R M, Bolfarini C, Kiminami C S, Bassim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy. J Non-Cryst Solids(2011), 284, 134.
[42] Lu Z P, Liu C T. Role of minor alloying additions in formation of bulk metallic glasses-a review. J Mater Sci(2004), 3, 3965.
[43] Hays C C, Kim C P, Johnson W L. Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions. Phys Rev Lett(2000), 84, 2901.
[44] Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl Phys Lett(2000), 77, 46.
[45] He G, Eckert J, Loser W and Schultz L. Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nature Mater(2003), 2, 33.
[46] Saida J, Kato H, Setyawan A D H, Yoshimi K, Inoue A. Deformation-Induced Nanoscale Dynamic Transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses. Mater Trans(2007), 48, 1327.
[47] Chen H, He Y, Shiflet G J, Poon S J. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature(1994), 367, 541.
[48] Kim J J, Choi Y, Suresh S, Argon A S. Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science(2002), 295, 654.
[49] Kumar G, Ohkubo T, Mukai T, Hono K. Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr Mater(2007), 57, 173.
[50] Choi-Yim H, Johnson W L. Bulk metallic glass matrix composites. Appl Phys Lett(1997), 71, 3808.
[51] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S, Hu Z Q. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite. Mater Sci Eng(2006), A418, 146.
[52] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M-L, Demetriou M D, Johnson W L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature Lett(2008), 451, 1085.
[53] Zheng Z, Wu F, He G, Eckert J. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials. J Mater Sci Technol(2007), 23, 6, 747.
[54] Turnbull D, Cohen M H. On the Free‐Volume Model of the Liquid‐Glass Transition. J Chem Phys(1970), 52, 3038.
[55] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall(1977), 25, 407.
[56] Huang J C, Chu J P, Jang J S C. Recent progress in metallic glasses in Taiwan. Intermet(2009), 17, 973.
[57] Argon A S. Plastic deformation in metallic glasses. Acta Metall(1979), 27, 47.
[58] Falk M L, Langer J S. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev(1998), E57, 7192.
[59] Honeycombe R W K. Plastic Deformation of Metals. Cambridge press(1984).
[60] Liu C T, Heatherly L, Easton D S, Carmichael C A, Schneibel J H, Chen C H, Wright J L, Yoo M H, Horton J A, Inoue A. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall Mater Trans(1998), A29, 1811.
[61] Zhang Z F, He G, Eckert J, Schultz L. Fracture Mechanisms in Bulk Metallic Glassy Materials. Phys Rev Lett(2003), 91, 45505.
[62] Donovan P E. A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall(1989), 37, 445.
[63] Lowhaphandu P, Lewandowski J J. Fracture toughness and Notched toughness of bulk amorphous alloy Zr-Ti-Ni-Cu-Be. Scr Mater(2001), 38, 1811.
[64] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater Trans(1990), JIM31, 177.
[65] Turnbull D. “Under what conditions can a glass be formed?,” Contemp Phys(1969), 10, 473.
[66] Lu Z P , Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater(2002), 50, 3501.
[67] Thompson C V, Greer A L, Spaepen F. Crystal nucleation in amorphous (Au100−yCuy)77Si9Ge14 alloys. Acta Metall(1983), 31, 1883.
[68] Tanner L E, Ray R. Metallic glass formation and properties in Zr and Ti alloyed with Be - the binary Zr-Be and Ti-Be systems. Acta Metall(1979), 27, 1727.
[69] Du X H, Huang J C, Liu C T, Lu Z P. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys(2007), 101, 86108.
[70] Lu Z P, Hu X, Li Y and Ng S C. Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses. Mater Sci Eng(2001), A304-306, 679.
[71] Li Y, Ng S C, Ong C K, Hng H H and Goh T T. Glass forming ability of bulk glass forming alloys. Scr Mater(1997), 36, 783.
[72] Guo S, Lu Z P, Liu C T. Identify the best glass forming ability criterion. Intermet(2010), 18, 883.
[73] Gebert A, Mummert K, Eckert J, Schultz L, Inoue A. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Mater Corros(1997), 48, 293.
[74] Qin C L, Zhang W, Asami K, Ohtsu N, Inoue A. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu–Hf–Ti–Nb alloys. Acta Mater(2005), 53, 3909.
[75] Habazaki H, Ukai H, Izumiya K, Hashimoto K. Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution. Mater Sci Eng(2001), A318, 77.
[76] Qiu C L, Liu L, Sun M, Zhang S M. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid. J Biomed Mater Res(2005), A75, 950.
[77] Inoue A, Shen B L, Yavari A R, Greer A L. Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J mater Res(2003), 18, 6, 1478.
[78] Antis G R, Chantikul P, Lawn B R, Marshall D B. A critical evaluation of indentation techniques for measuring fracture toughness. J Am Ceram Soc(1981), 64, 533.
[79] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J. Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Phys Rev Lett(2005), 94, 125510.
[80] Jang J S C, Li T H, Jian S R, Huang J C, Nieh T G. Effects of characteristics of Mo dispersions on the plasticity of Mg-based bulk metallic glass composites. Intermet(2011), 19, 738.
[81] Scherrer S S, Denry I L, Wiskott H W A. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent Mater(1998), 14, 246.
指導教授 鄭憲清(Jason Shian-ching Jang) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明