博碩士論文 993209017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.131.110.169
姓名 黎蕙瑛(Hui-Ying Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 陽極沉積釩氧化物於離子液體中之擬電容行為
(Pseudocapacitive Performance of Electrochemically-deposited Vanadium Oxide in Ionic Liquid Electrolytes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 離子液體電解質應用於石墨烯超級電容之特性分析
★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是以陽極沉積法製備釩氧化物電極,實驗中發現依傳統文獻中的方法分別在硫酸氧釩鍍液及添加雙氧水之硫酸氧釩鍍液中所沉積之釩氧化物,不僅沉積時間過長且薄膜並非整片均勻狀。因此在本實驗中嘗試添加醋酸鹽類(醋酸鋰、醋酸鈉、醋酸鉀)進入鍍液中。結果發現所沉積出的釩氧化物與未添加的釩氧化物相比,釩氧化物能形成整片均勻的薄膜,且沉積時間相當快速。對於其結果,實驗進一步研究添加醋酸鹽類造成釩氧化物快速且均勻沉積的原因,分別針對pH值、陽離子以及醋酸根來做為探討,根據結果,得知添加醋酸根的硫酸氧釩鍍液在pH值約為3.8即可有效沉積釩氧化物。另一方面,額外添加的鋰、鈉、鉀也扮演著重要的角色,從FESEM圖得知,鋰、鈉、鉀的添加使得釩氧化物在外觀上有所不同,經由XRD更進一步證實,額外添加的陽離子會使的晶體結構扭曲、面間距及晶粒大小的改變,而XPS也同樣證實了釩氧化物的表面確實含有鋰、鈉、鉀。而電化學特性方面,則是利用循環伏安法(Cyclic Voltammetry)進行擬電容測試,結果發現陽離子的添加也會影響到釩氧化物的電化學行為以及比電容值大小的差異,其中,含鉀的釩氧化物之比電容值為350 F/g;含鈉的釩氧化物之比電容值為238 F/g;含鋰的釩氧化物之比電容值為220 F/g。
之後根據前面的結果,以最具有良好表現的含鉀的釩氧化物嘗試在各種不同的離子液體中進行循環伏安掃描之擬電容測試以及定電流充放電測試,其中離子液體包含N-butyl-N-methylpyrrolidine bis(trifluoromethylsulfony)imide (BMP-NTf2)、1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide (EMI-NTf2)、1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6)、1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)、1-ethyl-3-methylimidazolium thiocyanate (EMI-SCN) 、1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA)、N-butyl-N-methylpyrrolidine dicyanamide (BMP-DCA),經由結果顯示,釩氧化物的比電容值與離子液體中的陰離子有關,且在DCA系列的離子液體中具有較佳的比電容值,其中以BMP-DCA的比電容值為最高,約90 F/g左右,電位窗可達3.4 V,且壽命較優於其他離子液體與一般水溶液。最後藉由比能量對比功率圖得知,在低速掃描下,在水溶液中的比能量約有13 Wh/kg,而在BMP-DCA中則有132 Wh/kg。而在相同比能量下(約10 Wh/kg左右),在水溶液中的比功率有9556 W/kg,而在BMP-DCA中則有27840 W/kg。顯示以離子液體為電解液確實能有效提升比能量及比功率,使得釩氧化物超高電容器更具有淺力。
摘要(英) The vanadium oxides were prepared by anodic deposition in this study. Follow the method in the literature, the deposited vanadium oxides from VOSO4・xH2O solution with or without H2O2 were not uniform, and the time of deposition was too long. As a consequence, acetate (lithium acetate, sodium acetate, potassium acetate) were added into the VOSO4・xH2O solution to improve the vanadium oxide deposition. The vanadium oxides deposited from the solutions with acetate were uniform, and the depositing rates were faster. According to the results, three factors were discussed to clarify the reason for uniform and fast vanadium oxide deposition: pH values, cations, and CH3COO-. The experimental results showed that the plating solutions containing CH3COO- at the pH around 3.8 produced vanadium oxide deposition fast and uniformly. On the other hand, the FESEM images confirmed that the cations affected the morphology of vanadium oxides. The XRD analyses explained that the cations could distort the lattice structure and change the d spacing and grain size. According to the XPS data, there were cations on the surface of vanadium oxides. In the electrochemical characterization, the cyclic voltammogtry showed that the cations could affect pseudocapacitive performance. The specific capacitance of Li-doped, Na-doped, K-doped vanadium oxide was 220, 238, 350 F/g, respectively.
As the previous results, the K-doped vanadium oxide deposition had the best quality. The pseudocapacitive performances and discharge-charge tests of the K-doped vanadium oxide were measured in the ionic liquids. And the ionic liquids included BMP-NTf2, EMI-NTf2, BMI-PF6, EMI-BF4, EMI-SCN, EMI-DCA, and BMP-DCA. The results showed that the specific capacitance was related to the anion of ionic liquids. And the vanadium oxides in the DCA-based ionic liquids had the best capacitance performance. In particular, in BMP-DCA, the specific capacitance of vanadium oxide was 90 F/g, the potential window of vanadium oxide was 3.4 V, and the cycle life performance in BMP-DCA was better than in other ionic liquids and aqueous solutions. Then, the capacitive behavior of the vanadium oxide in BMP-DCA was compared with that in 3 M KCl. At low scan rate, the specific energy of vanadium oxide was 13 Wh/kg in 3 M KCl and 132 Wh/kg in BMP-DCA. At the same specific energy (~10 Wh/kg), the specific power of vanadium oxide was was 9556 W/kg in 3 M KCl and 27840 W/kg in BMP-DCA. The results indicated that the ionic liquid electrolytes could promote the specific energy and the specific power. With the ionic liquid electrolytes, vanadium oxides may become a potential supercapacitor.
關鍵字(中) ★ 鉀
★ 鋰
★ 鈉
★ 超高電容器
★ 釩氧化物
★ 離子液體
關鍵字(英) ★ supercapacitor
★ vanadium oxide
★ ionic liquid
★ lithium
★ potassium
★ sodium
論文目次 摘要......................................................i
Abstract................................................iii
誌謝......................................................v
目錄....................................................vii
表目錄...................................................ix
圖目錄....................................................x
一、前言..................................................1
二、文獻回顧..............................................4
2-1 能源儲存裝置概述...................................4
2-2 超高電容器簡介.....................................7
2-3 釩氧化物之材料特性與製備方式......................11
2-4 醋酸鹽類對金屬氧化物沉積之影響....................26
2-5 離子液體簡介......................................31
2-6 離子液體於超高電容器中之應用......................36
三、實驗方法.............................................50
3-1 電極製備..........................................50
3-1-1 電極基材之前處理...............................50
3-1-2 陽極沉積釩氧化物薄膜...........................50
3-2 釩氧化物薄膜電極之材料特性分析....................51
3-2-1 表面形貌觀察...................................51
3-2-2 結晶結構分析...................................51
3-2-3 化學組成分析...................................52
3-3 釩氧化物電極於水溶液中之電化學特性評估............52
3-3-1 循環伏安曲線量測...............................52
3-4 釩氧化物於離子液體中之電化學特性評估..............53
3-4-1 離子液體製備...................................53
3-4-2 循環伏安曲線量測...............................54
3-4-3 計時電位曲線量測...............................54
四、結果與討論...........................................56
4-1 陽極沉積釩氧化物電極..............................56
4-1-1 掃描動電位與定電位沉積.........................56
4-1-2 影響沉積釩氧化物之因素.........................57
4-1-3 釩氧化物電極的表面形貌.........................60
4-1-4 釩氧化物電極的結晶結構.........................60
4-1-5 釩氧化物電極的化學組成與其價數.................61
4-1-6 釩氧化物電極在水溶液中之擬電容特性.............62
4-2 釩氧化物電極在不同離子液體中之擬電容行為........81
4-2-1 離子液體的電化學性質...........................81
4-2-2 釩氧化物電極在以NTf2為主的離子液體中之擬電容行為.............................................82
4-2-3 釩氧化物電極在BMI-PF6中之擬電容行為............82
4-2-4 釩氧化物電極在EMI-BF4中之擬電容行為............83
4-2-5 釩氧化物電極在EMI-SCN中之擬電容行為............83
4-2-6 釩氧化物電極在EMI-DCA中之擬電容行為............84
4-2-7 釩氧化物電極在BMP-DCA中之擬電容行為............84
4-2-8 釩氧化物於不同電解液之儲電性能.................86
五、結論................................................108
六、未來研究方向.......................................110
參考文獻................................................111
參考文獻 [1] Katsuhiko Naoi, Patrice Simon, “New Materials and New Configurations for Advanced Electrochemical Capacitors”, Electrochem. Soc. Interface, 2008, 17, 34–37.
[2] Guoping Wang, Lei Zhang and Jiujun Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chem. Soc. Rev., 2012, 41, 797–828.
[3] Mathieu Toupin, Thierry Brousse, and Daniel Be´langer, “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor”, Chem. Mater., 2004, 16, 3184–3190.
[4] Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang, and Hongjie Dai, “Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials”, J. Am. Chem. Soc., 2010, 132, 7472–7477.
[5] Kyung-Wan Nam, Eun-Sung Lee, Jae-Hong Kim, Young-Ho Lee, and Kwang-Bum Kim, “Synthesis and Electrochemical Investigations of Ni1−xO Thin Films and Ni1−xO on Three-Dimensional Carbon Substrates for Electrochemical Capacitors”, J. Electrochem. Soc., 2005, 152, 11, A2123–A2129.
[6] Hee Y. Lee and J. B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5・nH2O in Potassium Chloride (KCl) Aqueous Solution”, J. Solid State Chem., 1999, 148, 81–84.
[7] Hongrae Jeon, Beomgyun Jeong, Jae Kwang Lee, Ho Sung Kim, Si-Hyun Lee, and Jaeyoung Lee, “Improved Specific Capacitance of Amorphous Vanadium Pentoxide in a Nanoporous Alumina Template”, Electrochem. Solid-State Lett., 2010, 13, 3, A25–A28.
[8] Takaya Sato, Gen Masuda, Kentaro Takagi, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”, Electrochim. Acta 49 (2004) 3603–3611.
[9] J.N. Barisci, G.G. Wallace, D.R. MacFarlane, R.H. Baughman, “Investigation of ionic liquids as electrolytes for carbon nanotube electrodes”, Electrochem. Commun., 2004, 6, 22–27.
[10] Fernando Silva, Cristiana Gomes, Marta Figueiredo, Renata Costa, Ana Martins, Carlos M. Pereira, “The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface–Effect of temperature on the differential capacitance”, J. Electroanal. Chem., 2008, 622, 153–160.
[11] Qian Cheng, Jie Tang, Jun Ma, Han Zhang, Norio Shinya and Lu-Chang Qin, “Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density”, Phys. Chem. Chem. Phys., 2011, 13, 17615–17624.
[12] Laure Timperman, Hervé Galiano, Daniel Lemordant, Mériem Anouti, “Phosphonium-based protic ionic liquid as electrolyte for carbon-based supercapacitors”, Electrochem. Commun., 2011, 13, 1112–1115.
[13] Xin Zhao, Beatriz Mendoza Sanchez, Peter J. Dobson and Patrick S. Grant, “The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices”, Nanoscale, 2011, 3, 839–855.
[14] John R. Miller and Andrew F. Burke, “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications”, Electrochem. Soc. Interface, 2008, 17, 53–57.
[15] Yanyi Liu, Dawei Liu, Qifeng Zhang and Guozhong Cao, “Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries”, J. Mater. Chem., 2011, 21, 9969–9983.
[16] Jeffrey W. Long , Daniel Bélanger , Thierry Brousse , Wataru Sugimoto , Megan B. Sassin , and Olivier Crosnier, “Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes”, Mater. Res. Soc. Bull. 2011, 36, 513–522.
[17] Patrice Simon and Andrew Burke, “Nanostructured Carbons: Double-Layer Capacitance and More”, Electrochem. Soc. Interface, 2008, 17, 38–43.
[18] Patrice Simon and Yury Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater., 2008, 7, 845–854.
[19] B. E. Conway, “Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage”, J. Electrochem. Soc., 1991, 138, 6, 1539–1548.
[20] Hee Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte”, J. Solid State Chem., 1999, 144, 220–223.
[21] J. Livage, “Sol-gel chemistry and electrochemical properties of vanadium oxide gels”, Solid State Ionics, 1996, 86–88, 935–942.
[22] Ravinder N. Reddy, Ramana G. Reddy, “Porous structured vanadium oxide electrode material for electrochemical capacitors”, J. Power Sources, 2006, 156, 700–704.
[23] Szabolcs Beke, “A review of the growth of V2O5 films from 1885 to 2010”, Thin Solid Films, 2011, 519, 1761–1771.
[24] BeiWang, Konstantin Konstantinov, DavidWexler, Hao Liu, GuoXiuWang, “Synthesis of nanosized vanadium pentoxide/carbon composites by spray pyrolysis for electrochemical capacitor application”, Electrochim. Acta, 2009, 54, 1420–1425.
[25] Eugene Khoo, JinMin Wang, Jan Ma and Pooi See Lee, “Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors”, J. Mater. Chem., 2010, 20, 8368–8374.
[26] Huiqiao Li, Ping He, Yonggang Wang, Eiji Hosono and Haoshen Zhou, “High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5”, J. Mater. Chem., 2011, 21, 10999–11009.
[27] Il-Hwan Kim, Jae-Hong Kim, Byung-Won Cho, and Kwang-Bum Kim, “Pseudocapacitive Properties of Electrochemically Prepared Vanadium Oxide on Carbon Nanotube Film Substrate”, J. Electrochem. Soc., 2006, 153, 8, A1451–A1458.
[28] Chi-Chang Hu, Chao-Ming Huang, Kuo-Hsin Chang, “Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors”, J. Power Sources, 2008, 185, 1594–1597.
[29] J.N. Broughton, M.J. Brett, “Variations in MnO2 electrodeposition for electrochemical capacitors”, Electrochim. Acta, 2005, 50, 4814–4819.
[30] Chi-Chang Hu, Ming-Jue Liu, Kuo-Hsin Chang, “Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO− concentration, plating temperature, and oxide loading”, Electrochim. Acta, 2008, 53, 2679–2687.
[31] Natalia V. Plechkova and Kenneth R. Seddon, “Applications of ionic liquids in the chemical industry “, Chem. Soc. Rev., 2008, 37, 123–150.
[32] Frank Endres and Sherif Zein El Abedin, “Air and water stable ionic liquids in physical chemistry”, Phys. Chem. Chem. Phys., 2006, 8, 2101–2116.
[33] Maciej Gali´nski, Andrzej Lewandowski, Izabela St˛epniak, “Ionic liquids as electrolytes”, Electrochim. Acta, 2006, 51, 5567–5580.
[34] Fernanda F.C. Bazito, Yoshio Kawano, Roberto M. Torresi, “Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium”, Electrochim. Acta, 2007, 52, 6427–6437.
[35] D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, “Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases”, J. Phys. Chem. B, 1999, 103, 4164–4170.
[36] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M.Gratzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts”, Inorg. Chem., 1996, 35, 1168–1178.
[37] Sergei V. Dzyuba and Richard A. Bartsch, “Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl) imides on Physical Properties of the Ionic Liquids” Chem. Phys. Chem, 2002, 3, 161–166.
[38] S. Carda-Broch, A. Berthod, A. W. Armstrong, “Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid”, Anal. Bioanal. Chem., 2003, 375, 191–199.
[39] Tetsuo Nishida, Yasutaka Tashiro, Masashi Yamamoto, “Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte”, J. Fluorine Chem.,2003, 120, 135–141.
[40] M. Zistler, C. Schreiner, P. Wachter, P. Wasserscheid, D. Gerhard, and H. J. Gores, “Electrochemical Characterization of 1-Ethyl-3-methylimidazolium Thiocyanate and Measurement of Triiodide Diffusion Coefficients in Blends of two Ionic Liquids”, Int. J. Electrochem. Sci., 2008, 3, 236–245.
[41] Yukihiro Yoshida, Osamu Baba, and Gunzi Saito, “Ionic Liquids Based on Dicyanamide Anion: Influence of Structural Variations in Cationic Structures on Ionic Conductivity”, J. Phys. Chem. B, 2007, 111, 4742–4749.
[42] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, “Low viscosity ionic liquids based on organic salts of the dicyanamide anion”, Chem. Commun., 2001, 1430–1431.
[43] Sho Makino, Yoshio Takasu, and Wataru Sugimoto, “Electrochemical Capacitor Properties of NiO in Ionic Liquids”, Chem. Lett., 2010, 39, 6, 544–545.
[44] Hongtao Liu, Ping He, Zhiying Li, Yang Liu, Jinghong Li, “A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte”, Electrochim. Acta, 2006, 51, 1925–1931.
[45] Dominic Rochefort , Anne-Laure Pont, “Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid”, Electrochem. Commun., 2006, 8, 1539–1543.
[46] Laurence Mayrand-Provencher and Dominic Rochefort, “Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO2 Electrodes”, J. Phys. Chem. C, 2009, 113, 1632–1639.
[47] Jeng-Kuei Chang, Ming-Tsung Lee, Wen-Ta Tsai, Ming-Jay Deng, and I-Wen Sun, ” X-ray Photoelectron Spectroscopy and in Situ X-ray Absorption Spectroscopy Studies on Reversible Insertion/Desertion of Dicyanamide Anions into/from Manganese Oxide in Ionic Liquid”, Chem. Mater., 2009, 21, 2688–2695.
[48] Jeng-Kuei Chang, Ming-Tsung Lee, Chi-Wei Cheng, Wen-Ta Tsai, Ming-Jay Deng, and I.-Wen Sun, “Evaluation of Ionic Liquid Electrolytes for Use in Manganese Oxide Supercapacitors”, Electrochem. Solid-State Lett., 2009, 12, A19–A22.
[49] Jeng-Kuei Chang, Ming-Tsung Lee, Chi-Wei Cheng, Wen-Ta Tsai, Ming-Jay Deng, Ya-Ching Hsieh, and I-Wen Sun, “Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium–dicyanamide ionic liquid”, J. Mater. Chem., 2009, 19, 3732–3738.
[50] Jeng-Kuei Chang, Ming-Tsung Lee, Wen-Ta Tsai, Ming-Jay Deng, Hui-Fang Cheng, and I-Wen Sun, ” Pseudocapacitive Mechanism of Manganese Oxide in 1-Ethyl-3-methylimidazolium Thiocyanate Ionic Liquid Electrolyte Studied Using X-ray Photoelectron Spectroscopy”, Langmuir, 2009, 25, 11955–11960.
[51] Ming-Tsung Lee, Wen-Ta Tsai, Ming-Jay Deng, Hui-Fang Cheng, I-Wen Sun, Jeng-Kuei Chang, “Pseudocapacitance of MnO2 originates from reversible insertion/desertion of thiocyanate anions studied using in situ X-ray absorption spectroscopy in ionic liquid electrolyte”, J. Power Sources, 2010, 195, 919–922.
[52] E. Potiron, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard, “Electrochemically synthesized vanadium oxides as lithium insertion hosts”, Electrochim. Acta, 1999, 45, 197–214.
[53] Hongrae Jeon, Beomgyun Jeong, Jae Kwang Lee, Ho Sung Kim, Si-Hyun Lee, and Jaeyoung Lee, “Improved Specific Capacitance of Amorphous Vanadium Pentoxide in a Nanoporous Alumina Template”, Electrochem. Solid-State Lett., 2010, 13, A25–A28.
[54] D. Briggs, M.P. Seah, John WILLEY & SONS. Vol. 1, second edition 1993.
[55] Colton R.J., Guzman A.M., Rabalais J.W., “Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy”, J. Appl. Phys., 1978, 49, 409–416.
[56] D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G.W. Spitznagel, I. Rademacher, “XPS studies of oxidic model catalysts: Internal standards and oxidation numbers”, J. Electron Spectrosc. Relat. Phenom., 1993, 63, 91–116.
[57] Geert Silversmit, Diederik Depla, Hilde Poelman, Guy B. Marin, Roger De Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)”, J. Electron Spectrosc. Relat. Phenom., 2004, 135, 167–175.
[58] C. Tsang and A. Manthiram, “Synthesis of Nanocrystalline VO2 and Its Electrochemical Behavior in Lithium Batteries”, J Electrochem. Soc., 1997, 144, 520–524.
[59] Shudong Zhang, Yingmei Li, Changzheng Wu, Fei Zheng, and Yi Xie, “Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures: Facile Synthesis and Application in Aqueous Lithium Ion Batteries”, J. Phys. Chem. C, 2009, 113, 15058–15067.
[60] Hongtao Liu, Guoyi Zhu, “The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids”, J. Power Sources, 2007, 171, 1054–1061.
[61] Renjie Chen, Feng Wu, Bin Xu, Li Li, Xinping Qiu, and Shi Chen, “Binary Complex Electrolytes Based on LiX [X = N(SO2CF3)2−, CF3SO3−, ClO4−]-Acetamide for Electric Double Layer Capacitors”, J. Electrochem. Soc., 2007, 154, 7, A703–A708.
[62] Kanako Yuyama, Gen Masuda, Hiroshi Yoshida, Takaya Sato, “Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications”, J. Power Sources, 2006, 162, 1401–1408.
[63] Fiona B. Sillars, S. Isobel Fletcher, Mojtaba Mirzaeian and Peter J. Hall, “Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size”, Phys. Chem. Chem. Phys., 2012, 14, 6094–6100.
[64] Guo-hua Sun, Kai-xi Li, Cheng-gong Sun, “Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors”, J. Power Sources, 2006, 162, 1444–1450.
[65] Laurence Mayrand-Provencher, Sixian Lin, Déborah Lazzerini, Dominic Rochefort, “Pyridinium-based protic ionic liquids as electrolytes for RuO2 electrochemical capacitors”, J. Power Sources, 2010, 195, 5114–5121.
[66] Kuo-Hsin Chang, Chi-Chang Hu, “H2V3O8 single-crystal nanobelts: Hydrothermal preparation and formation mechanism”, Acta Mater. , 2007, 55, 6192–6197.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明