博碩士論文 993209018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.202.167
姓名 許銀驛(Yin-yi Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 超薄鎳合金磊晶矽化物生成行為與熱穩定性研究
(The Study of Ultrathin Nickel Alloy Epitaxial Silicides Formation and Thermal Stability)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在互補式金氧半電晶體元件尺寸日益縮小的趨勢下,自我對準金屬矽化物製程(self-aligned silicidation process)相關技術已經面臨製程上的極限。近幾年來金氧半場效電晶體為了增加其元件效能,因此利用磊晶金屬矽化物(epitaxial metal silicide)源/汲極結構來取代先前的金屬矽化物源/汲極,而且可以在矽化物/矽接面處形成相當平整的磊晶矽化物以有效的降低接觸面的接觸電阻(contact resistance)。而有研究指出當金屬Ni厚度小於某一臨界厚度即可在低溫下生成磊晶二矽化鎳(Epi- NiSi2)而不需經過其他中間相。根據上述之現象,本研究探討以磁控濺鍍沉積系統所製備出之不同鎳合金元素的薄膜,包含Ni1-xPtx/ Si、Ni1-yTiy/ Si及Ni1-zAlz/ Si三個系統並針對其超薄鎳合金磊晶矽化物之生成行為,並藉由摻雜不同元素探討其二矽化鎳生成行為之影響作一深入探討。本研究發現在鍍膜後將金屬蝕刻掉會留下一層超薄的鎳矽混合層(Ni-Si intermixed layer),再經過退火的處理可以在低溫下生成超薄的磊晶二矽化鎳(Epi- NiSi2),經由此方法生成的磊晶可以避免大量的倒金字塔結構產生,相信對其漏電流的影響會有所改善。搭配各種材料分析方法如:四點探針、背向散射電子繞射儀、掃描式電子顯微鏡、光電子能譜儀、穿透式電子顯微鏡觀察超薄鎳合金磊晶矽化物的電性、晶格對稱性、表面型態、鍵結分析、合金元素分布情形以及原子級微結構,經由本實驗可以得知超薄鎳合金磊晶矽化物應用在先進的金氧半場效電晶體的源極/汲極之接觸是相當有發展性的材料。
摘要(英) As the complementary metal-oxide-semiconductor (MOS) transistor device size shrinked, self-aligned silicidation process have been faced with the limitation on the process. Recently, in order to increase MOSFET device performance, conventional metal silicide source/drain was replaced by epitaxial metal silicide source/drain structures, formed quite flat epitaxial silicide and effectively reduced the contact resistance in the silicide/silicon junction. It reported that the thickness of nickel is less than a critical thickness, epitaxial nickel disilicide can be generated at low temperatures without passing through other intermediate phase. According to the above phenomenon, the study was investigated through the different nickel alloy epitaxial silicide formation mechanism and the effect of different doping elements, which was prepared by magnetron sputter deposition system including the Ni1-xPtx/Si, Ni1-yTiy/Si and Ni1-zAlz/Si systems. It was found that after depositing and then metal etching a nickel-silicon would be leaved as a mixed layer. Subsequent annealing at low temperature of a mixed layer resulted in an ultrathin epitaxial nickel disilicide, which suppressed a lot of inverted pyramid structures and the leakage currents. The electrical properties, lattice symmetry, surface morphology, bonding analysis, alloying elements distribution and atomic-scale microstructure were then analyzed by four point probe, electron back-scattered diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, respectively. An ultrathin nickel alloy epitaxial silicide is the promising material for the application in advanced metal-oxide MOSFET source/drain contact.
關鍵字(中) ★ 磊晶金屬矽化物
★ 鎳矽混合層
★ 倒金字塔結構
★ 磁控濺鍍沉積
關鍵字(英) ★ pyramid structure
★ nickel-silicon mixed layer
★ epitaxial metal silicide
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2自我校準金屬矽化物之製程 2
1.3金屬矽化物 4
1.3.1 金屬矽化物生成方式 4
1.3.2 金屬矽化物成長機制 4
1.3.3 金屬矽化物種類 5
1.4 磊晶矽化物 13
1.4.1 簡介 13
1.4.2 磊晶二矽化鎳 14
1.4.3 二矽化鎳在矽基材上的磊晶成長 18
1.4.4 製程方法 20
1.4.5 影響磊晶矽化物成長的因素 21
參考文獻 22
第二章 分析儀器與實驗方法 29
2.1實驗流程圖 29
2.2超薄磊晶二矽化鎳試片製備示意圖 30
2.3四點探針(FOUR POINT PROBE,FPP) 31
2.4背向散射電子繞射儀(ELECTRON BACK-SCATTERED DIFFRACTION, EBSD) 32
2.5掃描式電子顯微鏡 (SCANNING ELECTRON MICROSCOPY, SEM) 34
2.6 X光光電子能譜儀(X-RAY PHOTOELECTRON SPECTROMETER, XPS) 35
2.7穿透式電子顯微鏡(TRANSMISSION ELECTRON MICROSCOPY,TEM) 36
2.8穿透式電子顯微鏡之試片製備(截面式) 37
第三章 超薄鎳鉑及鎳鈦矽化物形成於(001)矽基板之探討 38
3.1 研究動機 38
3.2 實驗步驟 40
3.3 結果與討論 41
3.3.1 FPP電性分析 41
3.3.2 EBSD相鑑定分析 42
3.3.3 SEM表面形貌分析 47
3.3.4 XPS表面鍵結分析 47
3.3.5 XPS元素縱深分析 53
3.3.6 TEM微結構分析 56
3.4 結論 64
參考文獻 65
第四章 超薄鎳鋁矽化物形成於(001)矽基板之探討 71
4.1 研究動機 71
4.2 實驗步驟 72
4.3結果與討論 73
4.3.1 FPP電性分析 73
4.3.2 EBSD相鑑定分析 74
4.3.3 SEM表面形貌分析 77
4.3.4 XPS表面鍵結分析 77
4.3.5 TEM微結構分析 79
4.3.6 CA接觸角量測 83
4.3.7 FPP熱穩定性測試 85
4.4 結論 86
參考文獻 87
第五章 總結 90
第六章 未來研究 91
參考文獻 92
參考文獻 Ch1
[1] L.J. Chen, “Silicide technology for integrated circuits,” Institute of Elec. Eng., London, (2004).
[2] T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, and M. Tsuchiaki, “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Trans. Electron Devices, 42, 915 (1995).
[3] S. L. Zhang and M. Ostling, ”Metal silicides in CMOS technology: past, present and future trends,” Critical Reviews In Solid State and Materials Science, 28, 1 (2004).
[4] C. Lavoie, F. M. d’Heurle, and S. L. Zhang, in Handbook of semiconductor manufacturing technology, 2nd Edition, edited by Y. Nishi and R. Doering (Taylor & Francis CRC Press, 2007), Chapter 10.
[5] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi silicide technology for scaled CMOS,” Microelectronics Eng., 60, 157 (2002).
[6] Properties of metal silicides, edited by K. Maex and M. Van. Rossum (Inspec, 1995).
[7] M. A. Nicolet and S. S. Lau, in chapter 6, “Formation and characterization of transition metal silicids,” VLSI electronics microstructure science, edited by N. G. Einspruch and G. B. Larrabee, Academic press, (1983).
[8] E. H. Rhoderick and R. H. William, “Metal-semiconductor contact,” in Monographs in electrical and electronic engineering, Oxford, U. K, Clarendon, (1988).
[9] F. M. d’Heurle, “Silicide interfaces in silicon technology,” J. Electron. Mater., 27, 1138 (1998).
[10] S. L. Zhang and U. Smith, “Self-aligned silicides for ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Tchnol. A, 22, 1361 (2004).
[11] J. A. Kittl and Q.Z. Hong, “Self-aligned Ti and Co silicides for high performance sub-0.18 mm CMOS technologies”, Thin Solid Films, 320, 110 (1998).
[12] A. Lauwes, P .Besser, T. Gutt, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S.Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-μm technologies,” Microelectronic Engineering, 50, 103 (2000).
[13] S. S. Lau, J. W Mayer, and K. N. Tu, “Interactions in the Co/Si thin-film system. I. Kinetics,” J. Appl. Phys., 49(7), 4005 (1978).
[14] G. J. van Gurp, W. F. van der Weg, and D. Sigurd, “Interactions in the Co/Si thin-film system. II. Diffusion-marker experiments,” J. Appl. Phys. 49(7), 4011 (1978).
[15] F. M. d’Heurle and C. S. Petersson, “Formation of thin films of CoSi2: Nucleation and diffusion mechanisms,” Thin Solid Films, 128, 283 (1985).
[16] A. R. Appelbaum, V. Knoell, and S. P. Murarka, “Study of cobalt-disilicide formation from cobalt monosilicide,” J. Appl. Phys., 57(6), 1880 (1985).
[17] A. H. van Ommen, C. W. T. Bulle-Lieuwma, and C. Langereis, “Properties of CoSi2 formed on (001) Si,” J. Appl. Phys., 64(5), 2706 (1988).
[18] G. J. V. Gurp and C. Langereis, “Cobalt silicide layers on Si. I. structure and growth,” J. Appl. Phys., 46, 4301 (1975).
[19] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001) ,” Acta Mater., 54, 4905 (2006).
[20] J. P. Gambino and E. G. Colgan, “Silicides and ohmic contacts,” Mater. Chem. Phys., 52, 99 (1998).
[21] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction,” J. J. Appl. Physi., 43, 5997 (2004).
[22] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[23] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[24] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001) ,” Acta Mater., 54, 4905 (2006).
[25] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectron. Eng., 71, 104 (2004).
[26] D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering,” IEEE, 113 (2004).
[27] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition,” Appl. Phys. Lett., 75, 1736 (1999).
[28] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Device Lett., 22, 568 (2001).
[29] C. Detavernier and C. Lavoie, ”Influence of Pt Addition on the Texture of NiSi on Si(001),” Appl. Phys. Lett., 84, 3549 (2004).
[30] P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides,” J Electrochem. Soc., 152, G305 (2005).
[31] D. Lee, K. Do, D. H. Ko, S. Choi, J. H. Ku, and C. W. Yang, “The effects of Ta on the formation of Ni-silicide in Ni0.95xTa0.05x/Si systems,” Mater. Sci. Eng. B, B114, 241 (2004).
[32] R. Wei and C. Dongzhi, ” Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation,” J. Electrochem. Soc., 155, H117 (2008).
[33] Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti alloying in nickel silicide formation,” Thin Solid Films, 504, 153 (2006).
[34] Y. Setiawan, P. S. Lee, C. W. Tan, K. L. Pey, X. C. Wang, and G. C. Lim,” Laser-induced Ni(Ti)silicide formation,” Appl. Phys. Lett., 88, 113108 (2006).
[35] C. J. Tsai, P. L. Cheng, and K. H. Yu, “Stress evolution of Ni/Pd/Si reaction system under isochronal annealing,” Thin Solid Films, 365(1), 72 (2000).
[36] M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the schottky barrier height of nickel silicide on p-silicon by aluminum segregation,” Appl. Phys. Lett., 92, 222114 (2008).
[37] F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro‥ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001),” Microelectron. Eng., 82, 474 (2005).
[38] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, ”Improvement in NiSi/Si contact properties with C-implantation,” Microelectronic Eng., 82, 479 (2005).
[39] S. Zaima, O. Nakatsuka, A. Sakai, J. Murota, and Y. Yasuda, “Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe(C) contacts,” Appl. Surf. Sci., 224, 215 (2004).
[40] L. W. Cheng, S. L. Cheng, and L. J. Chen, “Formation of Ni silicides on (001) Si with a thin interposing Pt layer,” J. Vac. Sci. Technol. A, 18, 1176 (2000).
[41] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems,” J. J. Appl. Phys., 44, 2945 (2005).
[42] U. Falke, F. Fenske, S. Schulze, and M. Hietschold, “XTEM studies of nickel silicide growth on Si(100) using a Ni/Ti bilayer system,” Phys. Stat. Sol. (a), 162, 615 (1997).
[43] W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of erbium interlayer on nickel silicide formation on Si(100),” Scr. Mater., 254, 2120 (2008).
[44] C. H. Olk, O. P. Karpenko, and S. M. Yalisove, “Growth of epitaxial β–FeSi2 thin films by pulsed laser deposition on silicon (111),” Journal of Materials Research, 2733 (1994).
[45] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 2583 (1998).
[46] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures,” Critical Reviews in Solid State and Material Science, 24, 1 (1999).
[47] K. Maex and M.V. Rossum, “Properties of Metal Silicides,” Inspec, London, (1995).
[48] L. J. Chen, “Silicide technology for integrated circuits,” Institute of Elec. Eng., London, (2004).
[49] R. T. Tung, J. M. Gibson, and J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures,” Phys. Rev. Lett., 50, 429 (1983).
[50] R. T. Tung, J. M. Gibson, and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Lett., 42, 888 (1983).
[51] Y. J. Chang and J. L. Erskine, “Diffusion layers and the schottky-barrier height in nickel silicide-silicon interfaces,” Phys. Rev. B, 28, 5766 (1983).
[52] J. M. Gibson, J. L. Batstone, F. C. Unterwald, and R. T. Tung, “Origin of A- or B-type NiSi2 determined by in situ transmission electron microscopy and diffraction during growth,” Phys. Rev. Lett., 60, 1158 (1988).
[53] J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Akerman, L. Hultman, M.Ostling, and S. L. Zhang, “Surface-energy triggered phase formation and epitaxy in nanometer-thick Ni1−xPtx silicide films,” Appl. Phys. Lett., 96, 031911 (2010).
[54] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
[55] Y. W. Ok, C. J. Choi, and T. Y. Seong, “Effect of a Mo interlayer on the electrical and structural properties of nickel silicides,” J. Electrochem. Soc., 150, G385 (2003).
[56] S. L. Chiu, Y. C. Chu, C. J. Tsai, H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems,” J. Electrochem. Soc., 151, G452 (2004).
[57] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[58] S. B. Mi, C. L. Jia, Q. T. Zhao, S. Mantl, and K. Urban, “NiSi2/Si interface chemistry and epitaxial growth mode,” Acta Mater., 57, 232 (2009).
[59] K. C. R. Chiu, J. M. Poate, J. E. Rowe, T. T. Sheng, and A. G. Cullis, “Interface and surface structure of epitaxial NiSi2 films,” Appl. Phys. Lett., 38, 988 (1981).
[60] N. W. Cheung and J. W. Mayer, “Lattice-location experiment of the Ni-Si interface by thin-crystal channeling of Helium ions,” Phys. Rev. Lett., 46, 671 (1981).
[61] J. M. Gibson and J. L. Batstone, “In-situ transmission electron microscopy of NiSi2 formation by molecular beam epitaxy,” Surf. Sci., 208, 317 (1989).
[62] D. P. Adams, S. M. Yalisove, and D. J. Eaglesham, “Interfacial and surface energetics of CoSi2,” J. Appl. Phys., 76, 5190 (1994).
Ch3
[1] S. L. Zhang, “Self-aligned silicides for ohmic contacts in complementary metal–oxide–semiconductor technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Technol. A, 22, 1361 (2004).
[2] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction”, J. J. Appl. Phys., 43, 5997 (2004).
[3] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[4] L. J. Chen, “Silicide technology for integrated circuits”, The institution of electrical engineer, London, (2004).
[5] O. Chamirian, J. A. Kittl, A. Lauwers, O. Richard, M. van Dal, and K. Maex, “Thickness scaling issues of Ni silicide,” Microelectron. Eng., 70, 201 (2003).
[6] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectron. Eng., 71, 104 (2004).
[7] D. Deduytsche, C. Detaverier, R. L. Van Meirhaeghe, and C. Lavoie, “High temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” J. Appl. Phys., 98, 033526 (2005).
[8] J. Seger, P. E. Hellstrom, J. Lu, B. G. Malm, M. von Haartman, M. Ostling, and S. L. Zhang, “Lateral encroachment of Ni-silicides in the source/drain regions on ultrathin silicon-on-insulator,” Appl. Phys. Lett, 86, 253507 (2005).
[9] J. Luo, Z. J. Qiu, Z. Zhang, M. Ostling, and S. L. Zhang, “Interaction of NiSi with dopants for metallic source/drain applications,” J. Vac. Sci.Technol. B, 28, 1 (2010).
[10] B. Imbert, R. Pantel, S. Zoll, M. Gregoire, R. Beneyton, S. D. Medico, and O. Thomas, “Nickel silicide encroachment formation and characterization,” Microelectron. Eng., 87, 245 (2010).
[11] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems,” J. J. Appl. Phys., 44, 2945 (2005).
[12] O. Nakatsuka, A. Suzuki, S. Akimoto, A. Sakai, M. Ogawa, and S. Zaima, “Dependence of electrical characteristics on interfacial structure of epitaxial NiSi2/Si schottky contacts formed from Ni/Ti/Si system,” Jpn. J. Appl. Phys., 47, 2402 (2008).
[13] D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering,” IEEE, 113 (2004).
[14] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition,” Appl. Phys. Lett., 75, 1736 (1999).
[15] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Device Lett., 22, 568 (2001).
[16] P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides,” J Electrochem. Soc., 152, G305 (2005).
[17] J. Demeulemeester, D. Smeets, C. V. B℃kstael, C. Detavernier, C. M. Comrie, N. P. Barradas, A. Vieira, and A. Vantomme,” Pt redistribution during Ni(Pt) silicide formation,” Appl. Phys. Lett., 93, 261912 (2008).
[18] Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti alloying in nickel silicide formation,” Thin Solid Films, 504, 153 (2006).
[19] Y. Setiawan, P. S. Lee, C.W. Tan, K.L. Pey, X. C. Wang, and G. C. Lim, ” Laser-induced Ni(Ti)silicide formation,” Appl. Phys. Lett., 88, 113108 (2006).
[20] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, H. S. Wong, P. C. Lim, Doreen M.Y. Lai, G. Q. Lo, C. H. Tung, G. Samudra, D. Z. Chi, and Y. C. Yeo, “Novel nickel-alloy silicides for source/drain contact resistance reduction in N-channel multiple-gate transistors with sub-35nm gate length,” IEDMS, (2006).
[21] V. I. Trofimov, N. M. Sushkova, and J.I. Kim, “Phase and structure transformations in the titanium interlayer during the nickel silicidation on Si(100) substrate,” Scr. Mater., 601, 4423 (2007).
[22] R. Wei and C. Dongzhi, “Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation,” J. Electrochem. Soc., 155, H117 (2008).
[23] F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro‥ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001),” Microelectron. Eng., 82, 474 (2005).
[24] K. Tsutsui, T. Shiozawa, K. Nagahiro, Y. Ohishi, K. Kakushima, P. Ahmet, N. Urushihara, M. Suzuki, and H. Iwai, “Improvement of thermal stability of Ni silicide on N+–Si by direct deposition of group III element (Al, B) thin film at Ni/Si interface,” Microelectron. Eng., 85, 2000 (2008).
[25] L. J. Chen, J. W. Mayer, K. N. Tu, and T. T. Sheng, “Lattice imaging of silicide-silicon interfaces,” Thin Solid Films, 93, 91 (1982).
[26] L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon,” Mater. Sci. Rep., 6, 53 (1991).
[27] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 2583 (1998).
[28] F. d’Heurle, C. Petersson, L. Stolt, and B. Strizker, “Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films,” J. Appl. Phys., 53, 5678 (1982).
[29] J. E. E. Baglin, H. A. Atwater, D. Gupta, and F. d’Heurle, “Radioactive Ni∗ tracer study of the nickel silicide growth mechanism,” Thin Solid Films, 93, 255 (1982).
[30] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[31] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001),” Acta Mater., 54, 4905 (2006).
[32] International Technology Roadmap for Semiconductors, 2011 Update.
[33] J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Akerman, L. Hultman, M.Ostling, and S. L. Zhang, “Surface-energy triggered phase formation and epitaxy in nanometer-thick Ni1−xPtx silicide films,” Appl. Phys. Lett., 96, 031911 (2010).
[34] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kell℃k, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
[35] R. T. Tung, J. M. Gibson and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Letters, 42, 888 (1983).
[36] H. von Kanel, T. Graf, J. Henz, M. Ospelt and P. Wachter, “NiSi2 layers grown on Si (111) by MBE and SPE,” J. Crystal Growth, 81, 470 (1987).
[37] R. T. Tung and F. Schrey, “Growth of epitaxial NiSi2 on Si(111) at room temperature,” Appl. Phys. Letters, 55, 256 (1989).
[38] J. P. Sullivan, R. T. Tung and F. Schrey, “Control of interfacial morphology: NiSi2/Si(100),” J. Appl. Phys., 72, 478 (1992).
[39] P. L. Tam and L. Nyborg, “Sputter deposition and XPS analysis of nickel silicide thin films,” Surface and Coatings Technology, 203, 2886 (2009).
[40] Y. Cao, L. Nyborg, and U. Jelvestam, “XPS calibration study of thin-film nickel silicides,” Surf. Interface Anal., 41, 471 (2009).
[41] J. Shi, D. Kojima, and M. Hashimoto, “The interaction between platinum films and silicon substrates: Effects of substrate bias during sputtering deposition,” J. Appl. Phys., 88, 1679 (2000).
[42] Liu Shuang, Zhong Zhiyong, Ning Yonggong, Chen Ai, Zhang Huaiwu, and Yang Jiade, “Formation of ultra-thin PtSi film by vacuum annealing,” Vacuum, 65, 133 (2002).
[43] Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie. MN, (1978).
[44] Vladimir I. Trofimov, Natalya M. Sushkova, and Jong-II Kim,“Phase and structure transformations in the titanium interlayer during the nickel silicidation on Si(1 0 0) substrate,” Surface Science, 601, 4423 (2007).
[45] A. Zangwill, Physics at Surfaces Cambridge University Press, London, (1988).
[46] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng., 71, 104 (2004).
[47] J. P. Sullivan, R. t. Tung, and F. Schrey, AT&T Bell Laboratories, Murray Hill, New Jersey, “Control of interfacial morphology: NiSi2/Si(100),” J.Appl. Phys., 72, 07974 (1992).
[48] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures,” Critical Reviews in Solid State and Material Science, 24, 1 (1999).
[49] Y. W. Ok, C. J. Choi, and T. Y. Seong, “Effect of a Mo interlayer on the electrical and structural properties of nickel silicides”, J. Electrochem. Soc., 150, G385 (2003).
[50] S. L. Chiu, Y. C. Chu, C. J. Tsai, and H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems,” J. Electrochem. Soc., 151, G452 (2004).
[51] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[52] R. T. Tung, J. M. Gibson, and J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures,” Phys. Rev. Lett., 50, 429 (1983).
[53] R. T. Tung, J. M. Gibson, and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Lett., 42, 888 (1983).
[54] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
Ch4
[1] D. X. Xu, S. R. Dasa, C. J. Peters, L. E. Erickson, “Material aspects of nickel silicide for ULSI applications,” Thin Solid Films, 326, 143 (1998).
[2] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction,” J. J. Appl. Phys., 43, 5997 (2004).
[3] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[4] L. J. Chen, “Silicide technology for integrated circuits,” The Institution of Electrical Engineer, London, (2004).
[5] L. J. Chen, J. W. Mayer, K. N. Tu and T. T. Sheng, “Lattice imaging of silicide-silicon interfaces,” Thin Solid Films 93, 91 (1982).
[6] L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon,” Mater. Sci. Rep., 6, 53 (1991).
[7] J. P. Sullivan, R. T. Tung and F. Schrey, “Control of interfacial morphology: NiSi2/Si(100),” J. Appl. Phys., 72, 478 (1992).
[8] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 5, 2583 (1998).
[9] F. d’Heurle, C. Petersson, L. Stolt, and B. Strizker, “Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films,” J. Appl. Phys., 53, 5678 (1982).
[10] J. E. E. Baglin, H. A. Atwater, D. Gupta, and F. d’Heurle, “Radioactive Ni∗ tracer study of the nickel silicide growth mechanism,” Thin Solid Films, 93, 255 (1982).
[11] V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. V. Landuyt, “In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines,” J. Appl. Phys., 90, 167 (2001).
[12] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[13] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001),” Acta Mater., 54, 4905 (2006).
[14] K. Tsutsui, R. Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima, and H. Iwai, “Analysis of irregular increase in sheet resistance of Ni silicides on transition from NiSi to NiSi2,” Microelectron. Eng., 85, 315 (2008).
[15] C. Detavernier, X. P. Qu, R. L. Van Meirhaeghe, B. Z. Li, and K. Maex, “Mixing entropy and the nucleation of silicides: Ni–Pd–Si and Co–Mn–Si ternary systems,” J. Mater. Res., 18, 1668 (2003).
[16] K.W. Richter, K. Hiebl, “NiAl1.74Si0.26 and NiSi1.83Ga0.17: Two materials with perfect lattice match to Si,” Appl. Phys. Lett., 83, 497 (2003).
[17] K. L. Pey, P. S. Lee, and D. Mangelinck, “Ni(Pt) alloy silicidation on (100) Si and poly-silicon lines,” Thin Solid Films, 462, 137 (2004).
[18] X. P. Qu, Y. L. Jiang, G. P. Ru, F. Lu, B. Z. Li, C. Detavernier, and R.L. Van Meirhaeghe, “Thermal stability, phase and interface uniformity of Ni-silicide formed by Ni–Si solid-state reaction,” Thin Solid Films, 462, 146 (2004).
[19] M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the schottky barrier height of nickel silicide on p-silicon by aluminum segregation,” Appl. Phys. Lett., 92, 222114 (2008).
[20] A. T. Y. Koh, R. T. P. Lee, A. E. J. Lim, D. M.-Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian, G. S. Samudra, and Y. C. Yeo, “Nickel-aluminum alloy silicides with high aluminum content for contact resistance reduction and integration in n-channel field-effect transistors,” J. Electrochem. Soc., 155, H151 (2008).
[21] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, A. T. Y. Koh, G. Q. Lo, G. S. Samudra, D. Z. Chi, and Y. C. Yeo, “Achieving conduction band-edge Schottky barrier height for arsenic-segregated nickel aluminide disilicide and implementation in FinFETs with ultra-narrow Fin widths,” IEEE Electron Device Lett., 29, 382 (2008).
[22] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, H. S. Wong, P. C. Lim, D. M. Y. Lai, G. Q. Lo, C. H. Tung, G. Samudra, D. Z. Chi, and Y. C. Yeo, “Novel nickel-alloy silicides for source/drain contact resistance reduction in n-channel multiple-gate transistors with sub-35nm gate length,” Tech. Dig. Int. Electron Devices Meet., 851 (2006).
Ch6
[1] M. Chan, F. Assaderaghi, S.A. Parke, C. Hu, and P.K. Ko, “Recessed-channel structure for fabricating ultrathin SOI MOSFET with low series resistance,” IEEE Trans. Electron Devices, 15, 22 (1994).
[2] E. Alptekin and M.C. Ozturk, “Schottky barrier height of nickel silicide contacts formed on Si1−xCx epitaxial layers,” IEEE Electron Devices Lett., 30, 1320 (2009).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明