博碩士論文 993211001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.239.179.228
姓名 謝逸凡(I-Fan Hsieh)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 使用GPU提升事件相關電位之動態因果模型的運算效能
(Accelerating Computation of DCM for ERP with GPU-Based Parallelism)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 基於動態因果模型之老化相關的運動網路研究★ 應用腦電圖預測中風病人復健情況
★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響★ 基於虛擬實境復健之中風後運動網路功能性重組研究
★ 應用腦電圖與相關臨床因子預測中風病人復原之研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文將使用GPU來加速MATLAB運算環境中事件相關電位之動態因果模型的運算效能,事件相關電位之動態因果模型是近期發展出來的建模方法,主要的功能是用來研究神經元的有效性連接及大腦功能的推論。動態因果模型經由最大期望值演算法的遞迴估測運算找出一組最佳的參數模型讓輸出最貼近實驗所觀察到的腦波輸出,其中的原理是將模型的似然函數最大化。由於最大期望值演算法中的估測運算相當耗時,且會隨著資料量的增加而運算時間也隨之增加,本文提供了一個平行化的架構並使用GPU來提高最大期望值演算法的運算效能,藉此動態因果模型可以快速的估測出神經元的有效性連接。
在本研究的平行架構中,我們將根據動態因果模型的模型複雜度(即需要被估測的參數數量)動態配置GPU執行緒的數量作分散式的平行運算。我們將改變資料長度以及模型複雜度並先使用電腦合成數據來呈現系統的平行效能及精準度的損失。研究結果顯示本研究所提供的GPU執行緒分配策略對MATLAB微分Hidden state的部分加速約達48.72倍且精準度高達99%。最後我們使用腦電波實驗數據評估GPU平行架構的加速效能並證明其實用性,GPU將整體MATLAB的運算時間從4527.8秒縮短至778.4秒,且在實驗結果中顯示兩者皆會篩選出相同的假設模型,但GPU和MATLAB所估算出的連接強度完全不同,這可能是因為動態因果模型屬於不適定問題(ill-posed problem)造成GPU和MATLAB估算出不同的區域最大值,因此我們將GPU的平行架構定義為快速掃描的工具,使用者可以先藉由GPU的快速運算來篩選假設模型,再使用MATLAB重複估算所選出假設模型的連接強度,最後再來比較哪個區域最大值為較佳的解。
摘要(英) This thesis presents the use of graphic processing unit (GPU) to accelerate a brain-activity analytical tool, the Dynamic Causal Modelling for Event Related Potential (DCM for ERP) in MATLAB. DCM for ERP is a recently developed advanced method for studying neuronal effective connectivity and making inference about the brain functions. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observed events (data) and the underlying probability model, such that the likelihood function is maximized. As the EM algorithm is computationally demanding, time consuming and largely data dependent, we propose a parallel computing scheme using GPUs to achieve a fast estimation of neural effective connectivity in DCM. The computational loading of EM was partitioned and dynamically distributed to either the threads or blocks according to the DCM model complexity (i.e. the number of parameters to be estimated). The performance of this dynamic loading arrangement in terms of execution time and accuracy loss were evaluated using synthetic data. The results show that our method can accelerate a Hidden state differential by about 48.72 times as fast as the MATLAB version and the accuracy is up to 99%. The experimental electroencephalogram (EEG) data were then used to evaluate the speedup factor and the estimation performance in terms of the model evidence in practice. The GPUs estimation could shorten the computing time from by 4527.8 to 778.4 seconds. The GPUs give qualitatively the same outputs as MATLAB does though quantitatively the estimates are not equal. This may be because of the ill-posed problem in the model and lead to different local maximization. Therefore, we consider this tool as a fast screen tool for users to select the most likely model and then the output results of the winning model should be double checked with MATLAB for re-assurance.
關鍵字(中) ★ 動態因果模型
★ 最大期望值演算法
★ GPU
★ CUDA
關鍵字(英) ★ Dynamic Causal Modelling
★ Expectation maximization
★ GPU
★ CUDA
論文目次 第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-3論文架構 4
第二章 研究相關理論與工具 5
2-1 最大期望值演算法 5
2-2 動態因果模型 7
2-2.1有效性連接 7
2-2.2動態因果模型 7
2-2.3動態因果模型的公式化模型 8
2-2.4動態因果模型的最大期望值演算法 11
2-3平行運算 13
2-4 GPU & CUDA 15
2-4.1 GPU簡介 15
2-4.2 GPU硬體架構 16
2-4.3 CUDA簡介 17
2-4.4 CUDA執行緒配置 18
2-4.5 CUDA 記憶體配置 19
2-5 GPU連接MATLAB的相關工具 22
第三章 研究方法 25
3-1系統評估 25
3-2平行架構 27
3-3執行緒分配 30
3-4研究工具 34
第四章 研究結果 36
4-1平行效能 36
4-2平行效能討論 50
4-3實作實驗結果 52
4-4實作實驗結果討論 60
第五章 結論與未來展望 62
5-1結論 62
5-2未來展望 64
參考文獻 65
附錄 67
參考文獻 [1] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” Neuroimage, vol. 19, no. 4, pp. 1273–1302, 2003.
[2] J. Nickolls and W. J. Dally, “The GPU computing era,” Micro, IEEE, vol. 30, no. 2, pp. 56–69, 2010.
[3] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An Efficient Fine-grained Parallel Genetic Algorithm Based on GPU-Accelerated,” in Network and Parallel Computing Workshops, 2007. NPC Workshops. IFIP International Conference on, 2007, pp. 855 –862.
[4] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-tree construction on graphics hardware,” ACM Trans. Graph., vol. 27, no. 5, pp. 126:1–126:11, Dec. 2008.
[5] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector multiplication on GPUs,” IBM Research Report, 2008.
[6] “SPM - Statistical Parametric Mapping.” [Online]. Available: http://www.fil.ion.ucl.ac.uk/spm/. [Accessed: 01-May-2012].
[7] T.-Y. Huang, Y.-W. Tang, and S.-Y. Ju, “Accelerating image registration of MRI by GPU-based parallel computation,” Magnetic Resonance Imaging, vol. 29, no. 5, pp. 712–716, Jun. 2011.
[8] “SPM & fMRI Medical Image Processing - GPU Computing Examples - AccelerEyes.” [Online]. Available: http://www.accelereyes.com/examples/spm_fmri_medical_image_processing. [Accessed: 01-May-2012].
[9] N. Kumar, S. Satoor, and I. Buck, “Fast Parallel Expectation Maximization for Gaussian Mixture Models on GPUs Using CUDA,” in High Performance Computing and Communications, 2009. HPCC ’09. 11th IEEE International Conference on, 2009, pp. 103 –109.
[10] H. D. Tagare, A. Barthel, and F. J. Sigworth, “An adaptive Expectation–Maximization algorithm with GPU implementation for electron cryomicroscopy,” Journal of Structural Biology, vol. 171, no. 3, pp. 256–265, Sep. 2010.
[11] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing. .
[12] B. H. Jansen and V. G. Rit, “Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns,” Biological Cybernetics, vol. 73, no. 4, pp. 357–366, 1995.
[13] O. David, L. Harrison, and K. J. Friston, “Modelling event-related responses in the brain,” NeuroImage, vol. 25, no. 3, pp. 756–770, Apr. 2005.
[14] O. David, S. J. Kiebel, L. M. Harrison, J. Mattout, J. M. Kilner, and K. J. Friston, “Dynamic causal modeling of evoked responses in EEG and MEG,” NeuroImage, vol. 30, no. 4, pp. 1255–1272, 2006.
[15] M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54, no. 12, pp. 1901–1909, 1966.
[16] NVIDIA CUDA Compute Unied Device Architecture Programming Guide. 2007.
[17] NVIDIA Corporation, CUDA Programming Guide v4.2. .
[18] “Parallel Computing Toolbox - MATLAB.” [Online]. Available: http://www.mathworks.com/products/parallel-computing/. [Accessed: 09-Mar-2012].
[19] “Jacket for GPU Computing - AccelerEyes.” [Online]. Available: http://www.accelereyes.com/products/jacket. [Accessed: 09-Mar-2012].
[20] “GPUmat: GPU toolbox for MATLAB.” [Online]. Available: http://gp-you.org/. [Accessed: 01-May-2012].
[21] B. Zhang, S. Xu, F. Zhang, Y. Bi, and L. Huang, “Accelerating MatLab code using GPU: A review of tools and strategies,” in Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on, 2011, pp. 1875 –1878.
[22] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model,” Journal of Computational Physics, vol. 228, no. 12, pp. 4468–4477, 2009.
[23] J. Downar, A. P. Crawley, D. J. Mikulis, K. D. Davis, and others, “A multimodal cortical network for the detection of changes in the sensory environment,” Nature neuroscience, vol. 3, pp. 277–283, 2000.
[24] S. Crottaz-Herbette and V. Menon, “Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence,” Journal of Cognitive Neuroscience, vol. 18, no. 5, pp. 766–780, 2006.
[25] M. X. Huang, R. R. Lee, G. A. Miller, R. J. Thoma, F. M. Hanlon, K. M. Paulson, K. Martin, D. L. Harrington, M. P. Weisend, J. C. Edgar, and others, “A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency,” Neuroimage, vol. 28, no. 1, pp. 99–114, 2005.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2012-9-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明