博碩士論文 993310601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.207.255.49
姓名 吉內兒(Geneille Emekia Greaves)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 關於發展中小島嶼國家的供水策略: 以聖文森貝基亞島為例
(On Water Augmentation Strategies for Small Island Developing States: Case Study of Bequia, St. Vincent )
相關論文
★ 水資源供需指標建立之研究★ 救旱措施對水資源供需之影響分析
★ 台灣地區颱風雨降雨型態之分析研究★ 滯洪池系統最佳化之研究
★ 運用遺傳演算優化串聯水庫系統聯合運轉規線之研究★ 河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例-
★ 整合型區域水庫與攔河堰聯合運轉系統模擬解析及優化之研究★ 河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例
★ 大漢溪中游生態基流量推估與棲地改善之研究★ 遺傳演算法運用在石門與翡翠水庫並聯系統操作規線之研究
★ 石門水庫水質模擬與水理探討★ 越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例
★ 防洪疏散門最佳啟閉時間之研究 -以基隆河臺北市河段為例-★ 配水管網破管與供水穩定性關係之研究
★ 石門水庫永續指標之建立與研究★ 台灣地區重要水庫集水區永續指標建立與評量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於新興繁榮的全球人口,全球化運動和氣候變化現象對水資源的壓力不斷上升;並且由於以上所有協同增效作用,更加推動了永續性水資源管理的緊迫性。小島嶼發展中國家(SIDS)的有限陸地上缺乏豐富的地表水體或大型地下水層,水資源短缺和壓力是更加嚴峻的。
貝基亞島具有共同的特色的小型沿海社區,反映出他們的脆弱和具有挑戰的水務部門。貝基亞島沒有地表儲水,僅有有限的地下水資源和易導致季節性缺水和乾旱般情況的氣候系統;因而島內幾乎是完全是依賴集雨的。然而,像這樣越來越強的乾旱強度和頻率增加形成了持續利用雨水作為供應的主要來源的阻礙。貝基亞島礙於面積狹小,也意味著社會經濟的可持續發展和水資源是相互依賴生存的,因而更進一步地突顯出及早確定可行的水資源策略的迫切需要。因此,為了符合水資源綜合管理的思想,本研究發展一種方法架構來為貝基亞島選擇一個可行的水資源供水策略,其同時也可以適用於各種小島嶼的環境中。
本研究首次採用層級分析法(AHP)的多準則決策,根據經濟的權宜計算,社會的接受度,環境的完整性,可靠性和技術傾向的評價標準之下,做出一個優先次序模型來排名一套非傳統的供水來源;如:海底管道,海水淡化,雙管線制度和政府蓄水池計畫等。 至於偏好的選擇必須受到經濟的評估;在評估中,通過平準化水成本(LWC)的計算以測試水資源的競爭力,給予財政上的可行性進行了評估。最後,用此研究,透過一個利用不同策略的可行性調查,以及選擇水資源計畫的社會意識形態標準,以對應整體社會的期望。
在貝基亞島的預期選擇中,環境已被評計為一個非常高的價值。在層級分析法(AHP)中,利益相關者同意以環保優先標準的比重已達37.4%;而社群中也有30%以此為偏好標準,僅次於只有41%的以經濟標準為主。海水淡化從層級分析法(AHP)被選定為增加供水的最合適的選擇,是由於它的可靠性標準中的主導地位,並因為74%的社會群眾轉達了對他們對海水淡化的支持,這一策略的成功機會大為改善。計算每一立方米2.87美元的平準化水成本(LWC),這種策略可說是具有成本競爭力。至於更進一步的經濟評估結果則表明,還有額外的好處可以得到;如:整體供水改善的結果也改善了與水有關的社會經濟標準和提供充足的消費使用。
雖然海水淡化已被社會廣泛接受,面對島上的自給自足的供水歷史,我們仍必須給予認真的考量如何實施成本和能源策略。對於貝基亞島而言,有58%的社群明確的表示對於供水網規劃管理的支持,以緩解未來水資源短缺和水資源市場風險的社會經濟挑戰,都是存在於現實的。
摘要(英) The strain on water resources is escalating owing to burgeoning global population, globalization and climate change; all of which acts synergistically to impel the urgency of sustainable water resource management. With limited landmasses, which do not allow for extensive surface water bodies or for large underground water storage, water scarcity and stress is more profound for small island developing states (SIDS). Bequia Island exhibits many features common to small coastal communities that reflect their fragile and challenged water sector. Bequia has no surface water reserves, limited groundwater resources and a climatic regime which results in seasonal water shortages and drought like conditions. The island rely almost exclusively on rainwater harvesting, however, increasing intensity and frequency of this drought like condition acts as an impediment to the continued utilization of rainwater as the primary source of supply. The diminutive size of Bequia means that sustainable socio-economic development and water resources are interdependent, further highlighting the exigent need to identify early feasible water augmentation strategies.
Conforming to the ideologies of integrated water resource management, this study develops a methodological framework to select a feasible water augmentation strategy for Bequia, and one that can be applicable to the context of various small islands. The research first employed multi-criteria decision making with emphasis on the Analytic Hierarchy Process (AHP) as a prioritization model to rank a set of non-conventional sources such as submarine pipelines, desalination, dual distribution system and a government cistern project, under the evaluation criteria of economic expediency, social acceptance, environmental integrity, reliability and technical propensity. The preferred alternative was then subjected to an economic assessment where the financial viability was evaluated by calculating the levelized water cost (LWC) to test the competitiveness of the water resource. Finally, the research maps the social desirability of the community through a survey by eliciting the likelihood of success of different strategies as well as society’s ideologies of criteria selection for selecting a water project.
The environment has been credited a very high value in project selection for Bequia. In the AHP analysis, stakeholders awarded the environmental criterion precedence with a weighing of 37.4% while 30% the community specified their preference for this criterion, second to the economic criterion of only 41%. Desalination was selected as the most suitable alternative to augment the water supply from the AHP analysis, owing to its dominance in the reliability criterion, and as 74% of the community conveyed support for desalination, the chance of success for this strategy is improved. A calculated LWC of US $2.87 per cubic meter indicates that this strategy can be cost competitive. Further economic assessment indicates that there are additional benefits to be derived such as: improved access to water resulting in improvement in water related socio-economic standards and sufficient availability for consumption. Although desalination is widely accepted among the community, careful consideration must be given in implementing this cost and energy demanding strategy given the history of self-supply water on the island. The prospect of mitigating water scarcity and its socio-economic challenges by venture of a water market is realistic for Bequia as 58% of the community articulated their support for a regulated water supply network.
關鍵字(中) ★ Small island developing states
★ Water scarcity.
★ Multi-criteria decision making
★ Integrated water resource management
★ Desalination
★ Climate change
★ AHP
關鍵字(英) ★ Water scarcity.
★ Small island developing states
★ Multi-criteria decision making
★ AHP
★ Climate change
★ Desalination
★ Integrated water resource management
論文目次 Table of Contents
Abstract i
Chinese Abstract iii
Acknowledgements v
Table of Contents vi
List of Tables viii
List of Figures ix
Acronyms & Symbols x
Chapter 1 Introduction 1
1.1 Background on water resources and water development 1
1.2 Small Island Developing States with special focus on the Caribbean 2
1.2.1 Water resources and vulnerability to Climate Change 3
1.3 Scope and objectives 5
Chapter 2 Literature Review 7
2.1 Decision modeling of water resources 7
2.2 Multi criteria decision making 9
2.2.1 Multi criteria analysis 9
2.2.2 MCDM technique adopted for this research 11
2.3 Analytic Hierarchy Process (AHP) 13
2.3.1 Basic characteristics and background 13
2.3.2 Application of the AHP in water resources planning and management 14
2.3.3 AHP axioms 15
2.3.4 Group decision making and the AHP 21
2.4 Economic evaluation of water resources 21
2.5 Social modeling of water resources 24
Chapter 3 Background of Study Area 26
3.1 Physiography and demographics 26
3.2 Water resources 27
3.3 Water issues and socio-economic challenges 29
Chapter 4 Methodology 34
4.1 Prioritization model 36
4.1.1 Design of AHP model for case study 37
4.1.2 Data Collection 42
4.1.3 Analyzing the survey results 44
4.2 Economic model 47
4.3 Modeling the dimension of social acceptance 52
4.3.1 Data assembly and analysis 52
Chapter 5 Results and Discussion 54
5.1 Presentation of AHP results 54
5.1.1 Discussion 57
5.1.2 Sensitivity analysis on AHP results 62
5.2 The economics of desalination 64
5.2.1 Financial feasibility 64
5.2.2 Sensitivity analysis on levelized water cost 71
5.2.3 Economic feasibility 73
5.3 Social acceptance of augmentation strategies 75
Chapter 6 Conclusion and Recommendation 83
6.1 Conclusion 83
6.2 Recommendations 85
6.3 Limitations 86
References 87
Appendix A 94
Appendix B 102
參考文獻 References
[1] Abeyratne, R., 1999. Management of the environmental impact of tourism and air transport on small island developing states. Journal of Air Transport Management, Volume 5, pp. 31-37.
[2] Ahmed, A. B., 2006. Desalination in Oman and the fundamentals of reverse osmosis. In: Practices and experiences of water and wastewater technology. Paris: UNESCO, pp. 1-14.
[3]Alcaraz, M. & Perch, L., 2003. Assessment and establishment of a baseline on information for decision making in Caricom Small Island Developing States: OAS/UNDESA.
[4] Al-Harbi, K., 2001. Application of the AHP in project management. International Journal of Project Management, Volume 19, pp. 19-27.
[5] Aravossis, K., Vliamos, S., Anagnostopoulos, P. & Kungolos, A., 2003. An innovative cost-benefit-analysis decision support system for the evaluation of alternative scenarios of water resources management. Parlar Scientific Publications, 12(12), pp. 1433-1443.
[6] Atikol, U. & Aybar, H. S., 2005. Estimation of water production cost in the feasibility analysis of RO systems. Desalination, Volume 184 , pp. 253–258.
[7] Avlonitis, S., Kouroumbas, K. & Vlachakis, N., 2003. Energy consumption and membrane replacement cost of seawater RO desalination plants. Desalination, Volume 157, pp. 151-158.
[8] Bajwa, G., Choo, E. & Wedley, W., 2008. Effectiveness analysis of deriving priority vectors from reciprocal pairwise comparison matrices. Asia-Pacific Journal of Operational Research, 25(3), pp. 279-299.
[9] Banat, F., 2007. Economic and technical assessment of desalination technologies, Geneva: Jordan University of Science and Technology.
[10] Banat, F. & Jwaied, N., 2008. Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination, Volume 220, pp. 566-573.
[11] Barzilai, J., 1997. Deriving weights from pairwise comparison matrices. Journal of the Operational Research Society, 48(12), pp. 1226-1232.
[12] BCEOM (Egis BCEOM International), 2009. National water resource management study, St. Vincent and the Grenadines, Kingstown, St. Vincent: European Union and Government of SVG.
[13] Bilton, A. et al., 2011. On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote location. Renewable Energy, Volume 36, pp. 3246-3256.
[14] BPOA, 1994. Global conference on the sustainable development of Small Island Developing States, Bridgetown, Barbados: United Nations Division for Sustainable Development.
[15] Bueno, R., Herzfeld, C., A.E, S. & Ackerman, F., 2008. The Caribbean and climate change- The cost of inaction, U.S: Global Development and Environment Institute, Tufts University.
[16] Burmil, S., Daniel, T. & Heterington, J., 1999. Human values and perceptions of water in arid landscapes. Landscape and Urban Planning , Volume 44, pp. 99-109.
[17] Calizaya, A., Meixner, O., Bengtsson, L. & Berndtsson, R., 2010. Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia. Water Resource Management, Volume 24, pp. 2267-2289.
[18] CEHI (Caribbean Environmental Health Institute), 2006. The evaluation of the use of desalination plants in the Caribbean, St. Lucia: UNESCO.
[19] CEHI, 2007. Integrated water resources management planning for Union Island, St. Vincent and the Grenadines, Castries, St.Lucia: United Nations Environment Programme Collaborating Center on Water and the Environment.
[20] CIA, 2012. Central Intelligence Agency: The world factbook. [Online]
Available at: https://www.cia.gov/library/publications/the-world-factbook/geos/vc.html
[Accessed 20 February 2012].
[21] CWSA, 2005. Socio-economic feasibility study: Water demand in the Grenadines, Kingstown: St. Vincent and the Grenadines Central Water and Sewage Authority.
[22] DAFFA, 2002. Economic and technical assessment of desalination in Australia with particular reference to nation action plan priorty regions, Australia: URS corporation.
[23] Dalalah, D., Al-Oqla, F. & Hayajneh, M., 2010. Application of the Analytic Hierarchy Process (AHP) in multicriteria anaysis of the selection of cranes. Jordan Journal of Mechanical and Industrial Engineering, 4(5), pp. 567-578.
[24] DETR (Department of Environment, Transport and Regions), 2009. Multi-criteria analysis: a manual. Wetherby, West Yorkshire: Department for Communities and Local Governments Publications.
[25] Djebedjian, B., Gad, H., Khaled, I. & Rayan, M., 2007. Reverse osmosis desalination plant in Nuweiba City (case study). Sharm El-Sheikh, Egypt, Eleventh International Water Technology Conference, IWTC11.
[26] Dolnicar, S. & Hurlimann, A., 2010. Desalinated versus recycled water - what does the public think. In: I. Escobar & A. Schafer, eds. Sustainable Water for the Future: Water Recycling versus Desalination. Amsterdam: Elsevier, pp. 375-388.
[27] Dolnicar, S., Hurlimann, A. & Grun, B., 2011. What affects public acceptance of recycled and desalinated water. Water Research, Volume 45, pp. 933-943.
[28] Durrant, S., Nurse, L. & Stoddard, A., 2008. Monitoring the effects of below average precipitationon water resources in Paget Farm, Bequia, The Grenadines, Cave Hill Campus, Barbados: Centre for Resource Management and Environmental Studies (CERMES).
[29] Eid, M., 2009. Social dimensions in Integrated Water Management, Cairo, Egypt: UNDP.
[30] Eltawil, M., Zhengming, Z. & Yuan, L., 2009. A review of renewable energy technologies integrated with desalination systems. Renewable and Sustainable Energy Reviews, Volume 13, pp. 2245-2262.
[31] Escobar, M. T. & Moreno-Jimenez, J. M., 2007. Aggregation of individual preference structures in AHP-group decision making. Group Decision and Negotiation, Volume 16, pp. 287-301.
[32] Expert Choice, Inc., Expert Choice software and manual. Website [Online]. Available: http://www.expertchoice.com/
[33] Fane, S., Robinson, J. & White, S., 2007. The use of levelised cost in comparing supply and demand side options. Water Supply, 3(3), pp. 184-192.
[34] Figueira, J., Greco, S. & Ehrgott, M., 2005. Multiple criteria decision analysis: State of the art surveys. Boston: Springer Science Business Media Inc.
[35] Gamper, C. & Turcanu, C., 2007. On the governmental use of multi-criteria analysis. Ecological Economics, Volume 62, pp. 298-307.
[36] Garfi, M., Ferrer-Marti, L., Bonoli, A. & Tondelli, S., 2011. Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil. Journal of Environmental Management, Volume 92, pp. 665-675.
[37] Gilau, A., 2009. Renewable energy powered seawater reverse osmosis for Bequia Island, St. Vincent and the Grenadines Draft Report, Kingstown St. Vincent: The World Bank; Caribbean Community Secretariat.
[38] GOSVG (Government of St. Vincent and the Grenadines), 2009. Special programme for adaptation to climate change: Implementation of Adaptation Measures in Coastal Zone Project, Kingstown St. Vincent.
[39] Grandzol, J., 2005. Improving the faculty selection process in higher education: A case for the Analytic Hierarchy Process. Association for Institutional Research, Volume 6.
[40] Hajkowicz, S. & Collins, K., 2007. A review of multiple criteria analysis for water resource planning and management. Water Resource Management, Volume 21, pp. 1553-1566.
[41] Hajkowicz, S. & Higgins, A., 2008. A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, Volume 184, pp. 255-265.
[42] Holder, R., 1990. Some comments on the Analytic Hierarchy Process. The Journal of the Operational Research Society, 41(11), pp. 1073-1076.
[43] Hurlimann, A., Dolnicar, S. & Meyer, P., 2009. Understanding behaviour to inform water supply management in developed nations - A review of literature, conceptual model and research agenda. Journal of Environmental Management, 91(1), pp. 47-56.
[44] Ishizaka, A. & Labib, A., 2009. Analytic Hierarchy Process and Expert Choice:Benefits and Limitations. ORInsight, 22(4), pp. 201-220.
[45] Ishizaka, A. & Lusti, M., 2006. How to derive priorities in AHP: a comparative study. Central European Journal of Operations Research, Volume 14, pp. 387-400.
[46] Jaber, J. & Mohsen, M., 2001. Evaluation of non-conventional water resources supply in Jordan. Desalination, Volume 136, pp. 83-92.
[47] Jabr, W. & El-Awar, F., 2004. GIS & analytical hierarchy process for siting water harvesting reservoirs , Irsal-Lebanon: Esri.
[48] Joslyn, O., 2007. Mainstreaming adaptation to Climate Change: Vulnerability and capacity assessment of St. Vincent and the Grenadines, Kingstown, St. Vincent: Caribbean Community Climate Change Centre.
[49] Karagiannis, I. & Soldatos, P., 2008. Water desalination cost literature:review and assessment. Desalination, Volume 223, pp. 448-456.
[50] Kengpol, A. & O’Brien, C., 2001. The development of a decision support tool for the selection of advanced technology to achieve rapid product development. International Journal of Production Economics, Volume 69, pp. 177-191.
[51] Latinopoulos, D., 2007. Multicriteria decision making for efficient water and land resources allocation in irrigated agriculture. Environment, Development and Sustainability, 11(2), pp. 329-343.
[52] Lattemann, S. & Hopner, T., 2008. Environmental impact and impact assessment of seawater desalination. Desalination, Volume 220, pp. 1-15.
[53] Li, S., 2008. Rank reversal properties of multicriteria decision making models. s.l.:The University of Birmingham, Master of Philosophy Thesis.
[54] Loucks, D. & Beek, E., 2005. Water resources systems planning and management. The Netherlands: UNESCO.
[55] Martin, O., 2002. Water resources in Latin America and the Caribbean: Issues and Options, Fortaleza, Brazil: Inter-American Development Bank.
[56] Mei, X., Rosso, R., Huang, G. & Nie, G., 1989. Application of the analytical hierarchy process to water resources policy and management in Beijing, China. International Association of Hydrological Sciences (IAHS), Volume 180.
[57] Mejia, A., 2008. [Online]
Available at: http://rosenberg.ucanr.org/documents/argentina/Majia%20Final%20082010.pdf
[Accessed 21 February 2012].
[58] Mimura, N. et al., 2007. Small Islands. In: M. Parry, et al. eds. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, pp. 687-716.
[59] Moraris, C. & Pang, A., 2004. Reverse osmosis desalination, water reuse and BOOT capacities, Watertown, MA: Ionics Incorporated .
[60] Munda, G., Nijkamp, P. & Rietveld, P., 1994. Qualitative multicriteria evaluation for environmental management. Ecological Economics, Volume 10, pp. 97-112.
[61] Pankratz, T., 2009. Water desalination report. Global Water Intelligence, 45(37), pp. 1-4.
[62] Peters, E., 2003. Sizing of Rainwater Cisterns for Domestic Water Supply in the Grenadines. Conference papers, Cave Hill campus, Barbados. University of the West Indies.
[Online]
Available at: http://www.cavehill.uwi.edu/BNCCde/svg/conference/papers/peters.html
[Accessed 12 January 2012].
[63] Piper, S., 2009. Evaluating economic and fiancial feasibility of municipal and industrial water projects, Denver, Colorado: U.S Department of the Interior, Bureau of Reclamation.
[64] Qureshi, M. E., Harrison, S. R. & Wegener, M., 1999. Validation of multicriteria analysis models. Agricultural Systems, Volume 62, pp. 105-116.
[65] Raucher, R. & Cotruvo, R., 2004. Drivers, barriers, and evaluation criteria for potential changes in how utilities supply water in the future. In: Conventional and Unconventional Approaches to Water Service Provision. USA: Awwa Research Foundation, pp. 65-95.
[66] Reddy, K. V. & Ghaffour, N., 2007. Overview of the cost of desalinated water and costing methodologies. Desalination, Volume 205, pp. 340-353.
[67] Rogers, P., De Silva, R. & Bhatia, R., 2002. Water is an economic good: How to use prices to promote equity, efficiency and sustainability. Water Policy, Volume 4, pp. 1-17.
[68] Romero, C. & Rehman, T., 1987. Natural resource management and the use of multiple criteria decision making techniques: A review. European Review of Agricultural Economics, 14(1), pp. 61-89.
[69] Rossi, G., Cancelliere, A. & Giuliano, G., 2005. Case study: Multicriteria assessment of drought mitigation measures. Journal of Water Resources Planning and Management, 131(6), pp. 449-457.
[70] Saaty, T., 1980. The analytic hierarchy process: Planning, priority setting, resource allocation. New York and London: McGraw-Hill International Book Co..
[71] Saaty, T., 1990. How to make a decision: The Analytic Hierarchy Process. European Journal of Operational Research, Volume 48, pp. 9-26.
[72] Saaty, T., 2008. Decision making with the analytic hierarchy process. Int. J. Services Sciences, 1(1), pp. 83-98.
[73] Saaty, T. L. & Sagir, M., 2009. An essay on rank preservation and reversal. Mathematical and Computer Modelling, Volume 49, pp. 1230-1243.
[74] Salgado, P. et al., 2009. Participative multi-criteria analysis for the evaluation of water governance alternatives. A case in the Costa del Sol (Malaga). Ecological Economics, Volume 68, pp. 990-1005.
[75] Satterfield, Z., 2009. Tech brief: Dual water systems. National Environmental Services Center, 9(3), pp. 1-4.
[76] Sherman, G. et al., 2005. Seawater reverse osmosis – The most cost effective alternative for meeting Nassau’s near term water needs, Trinidad and Tobago: Caribbean water and wastewater association (CWWA).
[77] Sikder, A. & Mashfiqus, S., 2010. Participatory multi-criteria evaluation of alternative options for water supply in a cyclone prone area. Kathmandu, Nepal, Nepal Engineering College.
[78] Simmons & Associates Inc, 2000. National biodiversity strategy & action plan for St. Vincent & the Grenadines, Kingstown: Government of St. Vincent and the Grenadines.
[79] Tompkins, E. et al., 2005. Surviving Climate Change in Small Islands - A guidebook. United Kingdom: Tyndall Centre for Climate Change Research.
[80] Turner, R., 2006. Limits to CBA in UK and European environmental policy: Retrospects and future, Norwich, UK: University of East Anglia.
[81] UNEP-IETC, 1998 a. Sourcebook of alternative technologies for freshwater augmentation in Small Island Developing States. Technical Publication Series (8) ed. Washington, D.C: United Nations Environment Programme, International Environmental Technology Centre.
[82] UNEP-IETC, 1998 b. Sourcebook of alternative technologies for freshwater augmentation in Latin America and the Caribbean. Technical Publication Series (8) ed. Washington, D.C: United Nations Environment Programme, International Environmental Technology Centre
[83] UN-Water, 2007. Coping with water scarcity: Challenge of the twenty-first century : United Nations.
[84] Wang, Y.-M. & Elhag, T. M., 2006. An approach to avoiding rank reversal in AHP. Decision Support Systems, Volume 42, p. 1474–1480.
[85] WELL, 1998. DFID guidance manual on water supply and sanitation programmes, Leicestershire, UK: Water, Engineering and Development Centre (WEDC).
[86] Whittington, D., Briscoe, J., Mu, X. & Barron, X., 1990. Estimating the willingness to pay for water services in developing countries: A case study of the use of contingent valuation surveys in southern Haiti. Economic Development and Cultural Change, 38(2), pp. 293-311.
[87] Wilf, M. & Klinko, K., 2001. Optimization of seawater RO systems design. Desalination, Volume 138, pp. 299-306.
[88] World Bank, 2009. Renewable internal freshwater resources per capita (cubic meters). [Online]
Available at: http://data.worldbank.org/indicator/ER.H2O.INTR.PC
[Accessed 02 April 2012].
[89] Zejli, D., Benchrifa, R., Bennounna & Zazi, K., 2004. Economic analysis of wind-powered desalination in the south of Morocco. Desalination, Volume 165, pp. 219-230.
指導教授 吳瑞賢(Ray Shyan Wu) 審核日期 2012-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明