博碩士論文 993403007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.116.90.141
姓名 李嘉彬(Jia-Bin Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究
(Study on the fabrication and characterization of Zr-based bulk metallic glass composite and Zr-based metallic glass foam.)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 鈦基非晶填料應用於Ti-6Al-4V合金硬焊之微結構及機械性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中首先利用添加延性第二相阻擋剪切帶(shear band)並由墜落式急冷鑄造法製備出(Zr48Cu36Al8Ag8)99.25Si0.75之塊狀金屬玻璃複材(bulk metallic glass composite BMGc),非晶質合金複材,其直徑為2-4mm之棒材。這些含Ta強化顆粒之非晶質合金複材具有著和基材相似的熱性質且具高的GFA(glass forming ability)。ZrCu基(BMG)添加10 vol.% Ta顆粒在壓縮試驗中(直徑2mm)也表現出22%真實塑性變形量,降伏應力為1800MPa,破壞強度達1850MPa(室溫下);外添加之Ta顆粒均勻分布於基材中,且顆粒間之平均間距為20±8 µm,以此來限制或阻擋shear band之傳遞。此外隨著Ta添加量增加,Ta顆粒之間的間距更短、Ta塑性區範圍更大會使得ZrCu 基BMGc塑性變形能力提升。
為了結合奈米級Ta析出相和微米級Ta顆粒之韌化效用,接著利用內析出及外添加Ta顆粒的方式成功地將Zr47.3Cu32Al8Ag8Ta4Si0.7成份之基材以墜落式鑄造法製備出包含奈米級Ta析出相及微米級Ta顆粒之金屬玻璃複材(直徑2~4mm),這些具奈米及微米級Ta顆粒之塊狀金屬玻璃複材具有和基材相似的熱性質及高的玻璃形成能力(glass forming ability,GFA)。室溫下ZrCu基BMGc含外添加6和9 vol.% Ta顆粒在壓縮試驗中(直徑2mm)也表現出超過25%真實塑性變形量,降伏應力約為1800MPa。均勻且較大之Ta(5-30µm)添加量(分布量)會限制剪切帶之傳遞,而奈米級較小的Ta塑性區也同時提升鋯銅基塊狀金屬玻璃複材之塑性變形量,因此延性顆粒間之間距及塑性區大小是BMGc提升塑性變形量之關鍵因素。
本研究也針對金屬玻璃複材之熱塑加工性進行探討,選用Zr47.3Cu32Al8Ag8Ta4Si0.7基材成份之塊狀金屬玻璃為試驗基材,並利用TMA在不同應變速率及不同溫度下(〜740至764 K)(5×10−2 to 5×10−1 s−1)研究其過冷液相區之熱塑性變形性質及流變應力。結果顯示在5×10−1 s−1應變速率下,該金屬玻璃複材之流變應力隨熱壓溫度升高而降低,且在764K時達到一個相對較低的流變應力值約為76MPa。同時在相同熱壓溫度下,其流變應力也會隨應變速率增加而增加。此外,透過複印精細度為奈米級之雷射貼紙實驗,証實了Zr47.3Cu32Al8Ag8Ta4Si0.7塊狀金屬玻璃複材於其過冷液相區也具備優良了的奈米級複印能力。
最後本研究利用金屬玻璃特有之過冷液相區超塑成形特性,並利用熱塑成型之粉冶金製程,成功地製備出含46~75%不同孔隙率之鋯基塊狀金屬多孔材(bulk metallic glass foam, BMGFs),並利用XRD及SEM和DSC來觀察其非晶性及孔洞大小和形態,研究結果發現此系列鋯基塊狀金屬多孔材(BMGFs)之楊氏系數範圍為4~21GPa,降伏應力在65~231MPa之間;楊氏系數和降伏應力都符合人體骨骼之機械性質。並從多孔理論模型預測中看出與降伏強度和楊氏系數和預測結果相符;可用做生物植入材並避免應力遮蔽效應。
摘要(英) The (Zr48Cu36Al8Ag8)99.25Si0.75-based bulk metallic glass composite (BMGc) rods ex situ dispersed with Ta particles (with a diameter of 2–4 mm) have been successfully fabricated by suction casting and characterized. These Ta-added BMGCs exhibit similar thermal properties in comparison with its base alloy counterpart, with relatively high glass forming ability (GFA). The results of compression test show that a superior mechanical performance with up to 22% compressive plastic strain, 1800 MPa yield strength and 1850 MPa fracture strength at room temperature can be obtained for the 2 mm diameter rod of the ZrCubased BMGc with 10 vol.% Ta particles. These ex situ dispersed Ta particles (20±8 µm) would arrange as semi-uniform confinement zones to restrict the shear band propagation. In addition, for a given Ta particle size, higher volume fraction particles would lead to more interfacial areas, shorter inter-particle spacings, smaller confinement zone sizes than the smaller volume fraction particles, and results in presenting larger compression plasticity.

The Zr47.3Cu32Al8Ag8Ta4Si0.7–based bulk metallic glass composites (BMGCs) rods (with a diameter of 2 ~ 4 mm) containing different volume fractions (Vf) of ex-situ dispersed micro-sized Ta particles have been successfully fabricated by suction casting and characterized. These BMGCs with ex-situ added Ta exhibit similar thermal properties in comparison with its base alloy counterpart, with relatively high glass forming ability (GFA). The results of compression test show that a superior mechanical performance with more than 25% compressive plastic strain and 1800 MPa fracture strength at room temperature can be obtained for the 2 mm diameter rod of the ZrCu-based BMGc ex-situ added 6 and 9 vol% Ta particles, respectively. The homogeneous distributed Ta particles (5-30 µm) would arrange as semi-uniform confinement zones to restrict the shear band propagation. In addition, for a given Ta particle size, higher volume fraction particles would lead to shorter inter-particle spacings, smaller confinement zone sizes than the smaller volume fraction particles, and results in presenting larger compression plasticity. Therefore, the inter-particle free spacing, as well as the confinement zone size (mean free path of shear bands), is apparently the controlling factor in affecting the plasticity of BMGCs.
The thermoplastic deformation behavior of a Zr47.3Cu32Al8Ag8Ta4Si0.7-based bulk metallic glass composite (BMGC) is studied using thermal mechanical analyzer (TMA) and high temperature compression test in the supercooled liquid (SCL) region. The deformation behavior of the Zr47.3Cu32Al8Ag8Ta4Si0.7-based BMGC rod is investigated using TMA under compression at different strain rates (5×10−2 to 5×10−1 s−1) and at different temperatures above the onset temperature of viscous-flow (~740 to 764 K) in the SCL region. It is observed that, at a constant strain rate of 5×10−2 s−1, the flow stress decreases with increasing temperature and reaches a relatively low value about 76 MPa at 764 K. In parallel, the value of flow stress increases with increasing strain rate at the same testing temperature. A satisfactory thermoplastic forming ability of the Zr47.3Cu32Al8Ag8Ta4Si0.7-based BMGC in the SCL region is demonstrated by imprinting the hologram pattern.
A series of open-cell bulk metallic glass foams (BMGFs) with different porosity content from 46% to 75% were successfully fabricated by a space holder technique. Morphologies of the foam, the amorphous nature and mechanical properties were systematically investigated by a combination of scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning carlorimetry (DSC), and compression test. The BMGFs possess Young′s moduli ranging from 4 to 21 GPa and yield strength within 65–231 MPa, matching well with the moduli as well as yield strength of human bones and the predictions from theoretical models. These BMGFs are promising for bio-implant application without significant stress shielding effect.
關鍵字(中) ★ 非晶質
★ 剪切帶
★ 楊氏系數
★ 玻璃形成能力
★ 塊狀金屬玻璃複合材
關鍵字(英) ★ amorphous
★ shear band
★ Young′s modulus
★ glass forming ability
★ bulk metallic glass composite
論文目次 Chinese abstract I
English abstract III
Acknowledgement VI
List of figure X
List of table XV
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 The Characteristics of Amorphous Alloy 5
2.1.1 Mechanical Properties 8
2.1.2 Room-Temperature Deformation and Fracturing 9
2.1.3 The influences of crystallization on the mechanical properties of bulk amorphous alloy 11
2.2 GFA of forming an amorphous phase 12
2.2.2 Glass Transition Temperature(Tg) 13
2.2.3 Reduced Glass Transition Temperature (Trg) 15
2.2.4 The γ Value 15
2.2.5 The γm Value 16
2.2.6 Supercooled liquid region (△Tx) 17
2.3 Crystallization of amorphous alloys 17
2.3.1 Methodology of investigating the thermal properties of amorphous alloy. 20
2.3.2 Structural Details 21
2.3.3 Concluding Remarks 24
2.4 Problem of monolithic amorphous alloys 25
2.5 Amendment of solving the brittleness of monolithic amorphous alloys 26
2.5.1 In-Situ Composites 27
2.5.2 Ex-Situ Composites 29

Chapter 3 Experimental Procedures 31
3.1 The dispersion toughening of Ta particles on the ZrCu-based BMG. 31
3.1.1 (Zr48Cu36Al8Ag8)99.25Si0.75 with ex-situ Ta dispersion 31
3.1.2 (Zr48Cu32Al8Ag8Ta4)99.25Si0.75 with ex-situ Ta dispersion 33
3.2 Thermoplastic forming ability of (Zr48Cu32Al8Ag8Ta4)99.25Si0.75 with ex-situ Ta 35
3.3 Fabrication and Characteristion of Zr-based open-cell bulk metallic glass foams 37
Chapter 4 Results and Discussion 39
4.1 Plasticity improvement of ZrCu-based bulk metallic glass by ex situ dispersed Ta particles 39
4.2 Further Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass by in-situ and ex-situ Dispersed Ta Particles 45
4.2-1 Thermal properties of the as-cast ZrCu-based BMGC 45
4.2.2 Microstructure of the as-cast Zr-based BMGCs 46
4.2.3 Mechanical properties 47
4.3 Thermoplastic forming ability of the ZrCu-based bulk metallic glass composite with Ta dispersoids 50
4.4 Application study of Zr-base metallic glass on the fabrication of BMG foam 54
Chapter 5 Conclusions 58
5.1 Ex-situ and in-situ toughing result 58
5.2 Thermoplastic forming ability 58
5.3 Open-cell bulk metallic glass foams application 59
Chapter 6 Future work 60
Reference 61
Figures 77
Tables 107
參考文獻 [1.1] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., Vol 48 , pp. 279–306 , 2000.
[1.2] J.R. Scully, A. Gebert, J.H. Payer, “Corrosion and related mechanical properties of bulk metallic glasses”, J. Mater. Res., Vol 22, pp. 303–313, 2007.
[1.3] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, “Ultra-High Strength above 5000 MPa and Soft Magnetic Properties of Co-Fe-Ta-B Bulk Glassy Alloys”, Acta Mater., Vol 52, pp. 1631–1637, 2004.
[1.4] J. Eckert, J. Das, S. Pauly, C. Duhamel, “Mechanical properties of bulk metallic glasses and composites”, J. Mater. Res., Vol 22, pp. 285–301, 2007.
[1.5] M.W. Chen, “Mechanical behavior of metallic glasses-microscopic understanding of strength and ductility”, Annu. Rev. Mater. Res., Vol 38, p. 14.1, 2008.
[1.6] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, “Mechanical behavior of amorphous alloys”, Acta Mater., Vol 55, p. 4067, 2007.
[1.7] A.R. Yavari, J.J. Lewandowski, J. Eckert, “Mechanical Properties of Bulk Metallic Glasses”, MRS Bull, Vol 32 (8) p. 635, 2007.
[1.8] H. Bei, S. Xie, E.P. George, “Softening caused by profuse shear banding in a bulk metallic glass”, Phys. Rev. Lett., Vol 96, p. 105503, 2006.
[1.9] B.G. Yoo, J. Jang, “A study on the evolution of subsurface deformation in a Zr-based bulk metallic glass during spherical indentation” , J. Phys. D: Appl. Phys., Vol 41, p. 074017, 2008.
[1.10] J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. , “Mechanical properties of bulk metallic glasses and composites”, Res., Vol 22, p. 285, 2007.
[1.11] C. Fan, R.T. Ott, T.C. Hufnagel, “Metallic glass matrix composite with precipitated ductile reinforcement”, Appl. Phys. Lett., Vol 81, p.1020, 2002.
[1.12] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, “Designing tensile ductility in metallic glasses”, Phys.Rev. Lett., Vol 94, p. 205501, 2005.
[1.13] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L.Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature, Vol 451 (28), p. 1085, 2008.
[1.14] H. Ma, J. Xu, E. Ma, “Appl. Mg-based bulk metallic glass composites with plasticity and high strength”, Phys. Lett., Vol 83, p. 2793, 2003.
[1.15] A.H. Brother, D.C. Dunand, Q. Zheng, J. Xu, J., “Amorphous Mg-based metal foams with ductile hollow spheres”, Appl. phys. , Vol 102, p. 023508, 2007.
[1.16] J.B. Li, J.S.C. Jang, C. Li, S.R. Jian, P.H. Tsai, J.D. Hwang, J.C. Huang, T.G. Nieh., “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles”, Vol 551, pp.249-254 ,2012.
[1.17] J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, X.H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, App. Phys. Lett., Vol 92, p.011930, 2008.
[1.18] J.S.C. Jang, S.R. Jian, T.H. Li, J.C. Huang, C.Y.A. Tsao, C.T. Liu, “Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites”, J. Alloys Compd., Vol 485, pp. 290–294 , 2009.
[1.19] J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, “Prominent plasticity of Mg-based bulk metallic glass composites by ex-situ spherical Ti particles”, Intermetallics, Vol 18, p.451, 2010.
[1.20] J.S.C. Jang, D.J. Pan, S.R. Jian, Y.H. Wu, J.C. Huang, T.G. Nieh, “Thermal and Mechanical Properties of The Zr-based Bulk Metallic Glass Composites With Ductile In-situ Dispersed Ta-rich particles”, Intermetallics, Vol 18, p.560, 2010.
[1.21] J.S.C. Jang, Y.S. Chang, T.H. Li, P.J. Hsieh, J.C. Huang, Chi.Y.A. Tsao, “Plasticity Enhancement of Mg58Cu28.5Gd11Ag2.5 Based Bulk Metallic Glass Composites Dispersion Strengthened by Ti Particles”, J. Alloys Compd., Vol 504, p. S102 , 2010.
[1.22] P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, J.S.C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Alloys Compd., Vol 504, p. S98, 2010.
[1.23] S. Pauly, S. Gorantla, G. Wang, U. Kuhn, J. Eckert, “Transformation-mediated ductility in CuZr-based bulk metallic glasses”, Nat. Mater, Vol 9, p.473, 2010.
[1.24] G. He, Z.F. Zhang, W. Loser, J. Eckert, L. Schultz, “Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass”, Acta Mater., Vol 51, p. 2383, 2003.
[1.25] Binary Phase Diagram, 2nd ed. plus updates, ASM International, OH, USA, 1996.
[1.26] G. He, Z. F. Zhang, W. Loser, J. Eckert, L. Schultz, “Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass”, Acta Mater., Vol 51, p. 2383, 2003.
[1.27] Binary Phase Diagram, 2nd edition plus updates, ASM International, Ohio, USA, 1996.
[1.28] J. S. C. Jang, S. R. Jian, D.J. Pan, Y. H. Wu, J. C. Huang, T. G. Nieh, “Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles”, Intermetallics, Vol 18,p. 560, 2010.
[1.29] J. Schroers, Q. Pham, J.A. Desai, “ Microelectromech”, Syst., Vol 16,p. 240, 2007.
[1.30] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nanotechnology 18 (2007) 035302.
[1.31] G. Kumar, H.X. Tang, J. Schroers, “Nanomoulding using thermoplastic forming with bulk metallic glass”, Nat. Lett., Vol 457, p.868, 2009.
[1.32] J. Schroers, Adv. Mater. 21 (2009) 1.
[1.33] D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, T. Shi, “Superplastic micro-forming of Zr65Cu17.5Ni10Al7.5 bulk metallic glass with silicon mold using hot embossing technology”, J. Alloys Compd., Vol 484, p.118, 2009.
[1.34] Brothers AH, Dunand DC., Adv Mater ,Vol 17,p. 484, 2005.
[1.35] Paital SR, Dahotre NB. ,Mater Sci Eng R, Vol 66, p.1, 2009.
[1.36] Gotman I. J Endourol ,Vol 11, p.383, 2009.
[1.37] Schroers J, Kumar JG, Hodges TM, Chan S, Kyriakides TR. J Miner, Metals, Mater ,Vol 61,p. 21, 2009.
[1.38]Demetriou MD, Wiest A, Hofmann DC, Johnson WL, Han B, Wolfson N, et al. J Miner, Metals, Mater,Vol 62,p.83, 2010.
[1.39]Lin CH, Huang CH, Chuang JF, Lee HC, Liu MC, Du XH, et al. Mater Sci Eng C ,Vol 32, p. 2578, 2012.
[1.40] Guo SF, Liu Z, Chan KC, Chen W, Zhang HJ, Wang JF, et al. Mater Lett ,Vol 84,p. 81, 2012.
[1.41] Schroers J, Veazey C, Johnson WL., Appl Phys Lett., Vol 82, p. 370, 2003.
[1.42] Wada T, Wang X, Kimura H, Inoue A. Mater Lett , Vol 63, p. 858, 2009.
[1.43] Wada T, Inoue A. Mater Trans JIM , Vol 44, p.2228, 2003.
[1.44]Brothers AH, Dunand DC., Appl Phys Lett .,Vol 84, p. 1108, 2004.
[2.1] R. Doglione, S. Spriano, L. Battezzati, Static mechanical characterization of a bulk amorphous and nanocrystalline Zr 40 Ti 14 Ni 11 Cu 10 Be 25 alloy, PI1 SO9659773(97)00188-8
[2.2] Nishiyama, N. and A. Inoue, “Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s”, Appl. Phys. Lett. Vol 80, pp. 568–570, 2002.
[2.3] Inoue, A., N. Nishiyama, and H.M. Kimura, “Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter”, Mater. Trans.JIM , Vol 38, pp. 179–183, 1997.
[2.4] Lu, I.-R., G. Wilde, G.P. Gorler, and R. Willnecker, “Thermodynamic properties of Pd-based glass-forming alloys”, J. Non-Cryst. Solids, pp. 250–252: 577–581,1999.
[2.5]. K. Matusita, T. Komatsu and R. Yokota, “Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials” , J. Mater. Sci., Vol 19,p.291, 1984.
[2.6] Z.F. Zhang, J. Eckert, L. Schultz, “Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass”, Acta Materialia, Vol 51, pp. 1167-1179, 2003.
[2.7]. W. Paul and R. J. Temkin, Amorphous germanium, I. A model for the structural and optical properties ,Adv. Phys., 1973, p.531.
[2.8]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., vol.94, 2002, p.141.
[2.9] R. W. Cahn, P. Hassen and E. J. Kramer(ed), “Glasses and amorphous materials” ,Materials Science and Technology, Vol 9, New York, USA, 1991.
[2.10]. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, “Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process”, Acta Mater., vol.47, p.579,1999.
[2.11] W.H. Wang et al., Bulk metallic glasses, Mater. Sci. Eng. R, vol.44, 2004, p.45-89.
[2.12]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, A. Inoue, W. Zhang, T. Zhang and K. Kurosaka , Acta Mater., vol.49, 2001, p.2645.
[2.13]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “Formation and mechanical properties of Cu–Hf–Ti bulk glassy alloys” ,J. Mater. Res., Vol.16, p. 2836, 2001.
[2.14]. T. D. Shen and R.B. Schwarz, “Bulk ferromagnetic glasses prepared by flux melting and water quenching” ,Appl. Phys. Lett., Vol.75, p. 49, 1999.
[2.15].B.S. Murty and K. Hono, “Formation of nanocrystalline phases in glassy matrix in melt-spun Mg-Cu-Y alloys” ,Mater. Trans., JIM, Vol 41, p.1538, 2000.
[2.16]. Z.P. Lu and C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Mater., Vol 50, pp. 3501-3512, 2002.
[2.17]. X.H. Du, J.C. Haung, C.T. Liu, Z.P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses” ,Appl. Phys. Lett., Vol 101, 2007, p.86-108.
[2.18]. Z.P. Lu, X. Hu, Y. Li, and S.C. Ng, “Glass forming ability of La-Al-Ni-Cu and Pd-Si-Cu bulk metallic glasses” ,Mater. Sci. Eng., Vol 304-306, p.679, 2001.
[2.19] M. Avrami, J. Chem, “Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei” ,Phys., Vol 8, p.212, 1940.
[2.20] T.A. Waniuk, J. Schroers and W.L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Appl. Phys. Lett., Vol.78, p. 1213, 2001.
[2.21] T.D. Shen and R.B. Schwarz, “Bulk amorphous Pd–Ni–Fe–P alloys: Preparation and characterization”, J. Mater. Res., vol.14, , p. 2107, 1999.
[2.22] Luborsky, F.E., “Perspective on application of amorphous alloys in magnetic devices. In Amorphous Magnetism II, eds. R.A. Levy. and R. Hasegawa”, New York: Plenum Press, pp. 345–368, 1977.
[2.23] Lu, K. , “Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties”, Mater. Sci. Eng. Rep. R16, pp. 161–221, 1996.
[2.24] Inoue, A. , “Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems”, Prog. Mater. Sci. 43, pp. 365–520, 1998.
[2.25] Inoue, A., W. Zhang, T. Tsurui, A.R. Yavari, and A.L. Greer, “Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass”, Philos. Mag. Lett. 85 , pp. 221–229, 2005.
[2.26] Hoffmaan, D.C., J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature 451, pp. 1085–1090, 2008.
[2.27] Koster, U. and U. Herold, “Crystallization of metallic glasses. In Glassy Metals I, eds. H.-J. Guntherodt and H. Beck,”, Berlin, Germany: Springer-Verlag, pp. 225–259, 1981
[2.28] Scott, M.G. , “Crystallization. In Amorphous Metallic Alloys, ed. F.E. Luborsky”, London, U.K. : Butterworths, pp. 144–168, 1983.
[2.29] Ranganathan, S. and C. Suryanarayana, “Amorphous to crystalline phase transformations”, Mater. Sci. Forum 3, pp.173–185, 1985.
[2.30] Waseda, Y. , “The Structure of Non-Crystalline Materials”, New York: McGraw-Hill, 1980.
[2.31] C. Suryanarayana, A. Inoue, BULK METALLIC GLASSES, CRC Press, International Standard Book Number-13:978-1-4200-8597-6
[2.32] J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. , “Transformation-mediated ductility in CuZr-based bulk metallic glasses”, Mechanical properties of bulk metallic glasses and composites, Res. 22, p. 285, 2007.
[2.33] C. Fan, R.T. Ott, T.C. Hufnagel, “Metallic glass matrix composite with precipitated ductile reinforcement” , Appl. Phys. Lett. 81, p.1020, 2002.
[2.34] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, “Designing tensile ductility in metallic glasses”, Phys.Rev. Lett. 94, 2005.
[2.35] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L.Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature 451, p.1085, 2008.
[2.36] H. Ma, J. Xu, E. Ma, “Appl. Mg-based bulk metallic glass composites with plasticity and high strength”, Phys. Lett. 83, p. 2793, 2003.
[2.37] A.H. Brother, D.C. Dunand, Q. Zheng, J. Xu, J. , “Amorphous Mg-based metal foams with ductile hollow spheres”, Appl. phys. , p.102, 2007.
[2.38] L. Liu, K.C. Chen, M. Sun, Q. Chen, “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles”, Mater. Sci. Eng. , p.p. 445–446, 2007.
[2.39] J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, X.H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, App. Phys. Lett. , p.92, 2008.
[2.40] J.S.C. Jang, S.R. Jian, T.H. Li, J.C. Huang, C.Y.A. Tsao, C.T. Liu, “Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites”, J. Alloys Compd.485, pp.290–294, 2009.
[2.41] J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, “Prominent plasticity of Mg-based bulk metallic glass composites by ex-situ spherical Ti particles”, Intermetallics 18, p.451, 2010.
[2.42] J.S.C. Jang, D.J. Pan, S.R. Jian, Y.H. Wu, J.C. Huang, T.G. Nieh, “Thermal and Mechanical Properties of The Zr-based Bulk Metallic Glass Composites With Ductile In-situ Dispersed Ta-rich particles”, Intermetallics 18, p.560, 2010.
[2.43] J.S.C. Jang, Y.S. Chang, T.H. Li, P.J. Hsieh, J.C. Huang, Chi.Y.A. Tsao, “Plasticity Enhancement of Mg58Cu28.5Gd11Ag2.5 Based Bulk Metallic Glass Composites Dispersion Strengthened by Ti Particles”, J. Alloys Compd., 2010.
[2.44] P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, J.S.C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, J. Alloys Compd. ,2010.
[2.45] S. Pauly, S. Gorantla, G. Wang, U. Kuhn, J. Eckert, “Transformation-mediated ductility in CuZr-based bulk metallic glasses”, Nature Materials, pp. 473-477, 2010.
[2.46] G. He, Z.F. Zhang, W. Loser, J. Eckert, L. Schultz, “Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass”, Acta Mater. , vol51. , pp.2383-2395, 2003.
[2.47] Binary Phase Diagram, 2nd ed. plus updates, ASM International, OH, USA, 1996.
[2.48] Amiya, K., A. Urata, N. Nishiyama, and A. Inoue, “Fe–B–Si–Nb bulk metallic glasses with high strength above 4000 MPa and distinct plastic elongation”, Mater. Trans. , vol. 45, pp. 1214–1218, 2004.
[2.49] Liu, F.J., Q.W. Yang, S.J. Pang, C.L. Ma, and T. Zhang, “Ductile Fe-based BMGs with high glass forming ability and high strength”, Mater. Trans. , vol. 49, pp.231–234, 2008.
[2.50] Inoue, A., B.L. Shen, and C.T. Chang , “Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system”, Acta Mater., vol. 52, pp. 4093–4099, 2004.
[2.51] Gu, X.J., S.J. Poon, and G.J. Shiflet, “Effects of carbon content on the mechanical properties of amorphous steel alloys”, Scr. Mater. , vol.57, pp. 289–292, 2007.
[2.52] Chen, D., A. Takeuchi, and A. Inoue. , “Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties”, Mater. Sci. Eng. , pp. 226–230, 2007.
[2.53]Yuan, G.Y., K. Amiya, and A. Inoue, “Structural relaxation, glass-forming ability and mechanical properties of Mg–Cu–Ni–Gd alloys”, J. Non-Cryst. Solids, vol.351, pp. 729–735, 2005.
[2.54] Xu, D.H., B. Lohwongwatana, G. Duan, W.L. Johnson, and C. Garland, “Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x = 34,36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass” , Acta Mater. ,vol. 52, pp. 2621–2624, 2004.
[2.55] T. A. Waniuk, J. Schroers and W. L. Johnson, “Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys” , Appl. Phys. Lett.,
vol.78, p.1213. , 2001
[4.1] S. Xie, E.P. George, “Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing”, Acta Mater. , vol. 56, p.5202, 2008.
[4.2] K.W. Chen, J.F. Lin, Int. J. , “Investigation of the relationship between primary and secondary shear bands induced by indentation in bulk metallic glasses”, International Journal of Plasticity, vol.26, pp. 1645-1658, 2010.
[4.3] K.W. Chen, S.R. Jian, P.J. Wei, J.S.C. Jang, J.F. Lin, “A study of the relationship between semi-circular shear bands and pop-ins induced by indentation in bulk metallic glasses”, Intermetallics, vol.18, p.1572, 2010.
[4.4] Z.F. Zhang, G. He, J. Eckert, L. Schultz, “Fracture Mechanisms in Bulk Metallic Glassy Materials”, Phys. Rev. Lett. , vol. 91, 2003.
[4.5] A.C. Lund, C.A. Schuh, “Yield surface of a simulated metallic glass”, Acta. Mater. , vol. 51, p. 5399, 2003.
[4.6] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, “Fracture of Brittle Metallic Glasses: Brittleness or Plasticity”, Phys. Rev. Lett. , vol. 94, pp.77-87, 2005.
[4.7] W. Zhang, Q. Zhang, A. Inoue, “Formation and thermal stability of new Zr–Cu-based bulk glassy alloys with unusual glass-forming ability”, J. Alloys Compd., Vol 483, p. 112, 2009.
[4.8] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L.Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature, Vol 451 (28), p.1085, 2008.
[4.9] Z. P. Lu and C. T. Liu, “A new approach to understanding and measuring glass formation in bulk amorphous materials”, Intermetallics, Vol 12, p. 1035, 2004.
[4.10] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, Jap., “New criterion of glass forming ability for bulk metallic glasses”, J. Appl. Phys., Vol 101, p. 086108, 2007.
[4.11] J. S. C. Jang, S. R. Jian, D.J. Pan, Y. H. Wu, J. C. Huang, T. G. Nieh, “Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles”, Intermetallics, Vol 18,p. 560, 2010.
[4.12] Z. F. Zhang, G. He, J. Eckert, L. Schultz, “Fracture mechanisms in bulk metallic glassy materials”, Phys. Rev. Lett., Vol 91, p. 0455051 , 2003.
[4.13] A. C. Lund, C. A. Schuh, “Yield surface of a simulated metallic glass”, Acta Mater., Vol 51,p. 5399, 2003.
[4.14] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, J. J. Lewandowski, “Fracture of Brittle Metallic Glasses: Brittleness or Plasticity”, Phys. Rev. Lett., Vol 94, p. 125510, 2005.
[4.15] W. Zhang, Q. Zhang, A. Inoue, “Electrochemical properties and surface analysis of Cu–Zr–Ag–Al–Nb bulk metallic glasses” ,J. Alloys Comp., Vol 483, p. 112, 2009.
[4.16] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature, Vol 451-28, p. 1085, 2008.
[4.17] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, 1997.
[4.18] C.L. Chiang, J.P. Chu, C.T. Lo, T.G. Nieh, Z.X. Wang, W.H. Wang, Intermetallics, Vol 12, p. 1057, 2004.
[4.19] J.S.C. Jang, C.F. Chang, Y.C. Huang, J.C. Huang, W.J. Chiang, C.T. Liu, Intermetallics, Vol 17, p.200, 2009.
[4.20] Q. Wang, D.K. Wang, T. Fu, J.J. Blandin, J.M. Pelletier, Y.D. Dong, J. Alloys Compd., Vol 495, p.50, 2010 .
[4.21] T.G. Nieh, T. Mukai, C.T. Liu, J. Wadsworth, Scripta Mater. Vol 40, p. 1021, 1999.
[4.22] J.P. Chu, C.L. Chiang, T. Mahalingam, T.G. Nieh, Scripta Mater. Vol 49, p. 435,2003.
[4.23] J. Schroers, Q. Pham, A. Desai, J. Microelectromech. Syst., Vol 16 p. 240,2007.
[4.24] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nanotechnology , Vol 18 ,p. 035302, 2007.
[4.25] G. Kumar, H.X. Tang, J. Schroers, “Nanomoulding using thermoplastic forming with bulk metallic glass”, Nat. Lett., Vol 457, p.868, 2009.
[4.26] J. Schroers, Adv. Mater. Vol 21, p. 1, 2009.
[4.27] Jang JSC, Jian SR, Chang CF, Chang LJ, Huang YC, Li TH, et al. J Alloys Compd ;478:215, 2009.
[4.28] Jang JSC, Chang CF, Huang YC, Huang JC, Chiang WJ, Liu CT. Intermetallics ;17:200, 2009.
[4.29] Currey JD. J Exp Biol ;202:2495, 1999.
[4.30] Evans AG, Hutchinson JW, Ashby MF. Prog Mater Sci ;43:171, 1998.
[4.31] Meyers MA, Chen PY, Lin AYM, Seki Y. Prog Mater Sci ;53:1, 2008.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明