博碩士論文 993406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.138.32.201
姓名 潘冠綸(Kuan-Lun Pan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 Double perovskite-type觸媒結合非熱電漿去除揮發性有機污染物之可行性探討
(Removal of VOCs via combining double perovskite-type catalysts and nonthermal plasma)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以perovskite-type觸媒為基礎發展新穎的double perovskite-type觸媒,並進一步應用於VOCs去除活性測試,其主軸可概分為二,一為double perovskite-type觸媒於催化系統對VOCs之活性評估,另一則是利用觸媒結合非熱電漿技術(含post-plasma catalysis及in-plasma catalysis)進行VOCs之去除測試。研究結果顯示double perovskite-type觸媒對VOCs有高活性,尤其是La2CoMnO6,其在300oC及30,000 h-1對C7H8之轉化效率及礦化率皆可達100%;此外,針對不同的VOCs如異丙醇、乙醛及乙烯,La2CoMnO6亦可分別於150oC、250 oC及350oC達完全去除;本研究亦發現double perovskite-type觸媒對CO2及H2O(g)有極佳的抗性;觸媒的物化特性分析結果顯示double perovskite-type觸媒的BET比表面積較低,但在反應中有良好的氧移動性(由於高比例的晶格氧),因此觸媒本身有較佳的氧化-還原能力,促進VOCs氧化反應。另一方面,本研究藉由DBD-type plasma-alone系統以不同的參數探討C7H8去除之性能以進一步解析plasma catalysis去除C7H8之機制。本研究發現post-plasma catalysis系統對C7H8的轉化效率與觸媒對於O3之分解效率有顯著相關性,以La2CoMnO6為例,在120oC條件下,O3於12-19 kV皆可完全去除,而C7H8之轉化效率及礦化率最高分別可達100%及66%;另外,於in-plasma catalysis系統,觸媒與電漿存在顯著的加乘效應,在常溫與120oC條件下,C7H8的轉化效率及礦化率皆顯著高於plasma-alone系統, La2CoMnO6之in-plasma catalysis對C7H8的去除效率及礦化率最高分別為100%及98%,且於120oC條件下,perovskite-type觸媒可有效抑制NOx生成。整體而言,本研究結果顯示double perovskite-type觸媒於不僅可單獨應用於催化系統,且在plasma catalysis系統對VOCs之去除亦呈現高效能,證實double perovskite-type觸媒確實有潛力取代或運用於空氣污染物之處理。
摘要(英) In this study, novel double perovskite-type catalysts are developed and tested for VOCs removal. The research could be divided into 2 aspects: (1) catalytic activities of double perovskite-type catalysts for removal of VOCs, and (2) performance of plasma catalysis (including post-plasma catalysis and in-plasma catalysis) for VOCs removal. Experimental results indicate that double perovskite-type catalysts show higher activities for C7H8 removal if compared with traditional perovskite-type catalysts. Especially, C7H8 conversion and mineralization efficiencies achieved with La2CoMnO6 could reach 100% at 300oC and 30,000 h-1. In addition, various VOCs such as isopropanol (C3H8O), acetaldehyde (C2H4O), and ethylene (C2H4) could be converted completely at 150oC, 250oC, and 350oC, respectively, as La2CoMnO6 is applied as catalyst. Additionally, results indicate that double perovskite-type catalysts not only possess tolerance for CO2 and H2O(g), but also present good durability. The analysis of catalyst surface indicates that double perovskite-type catalysts have good mobility of oxygen due to high lattice oxygen ratio, therefore, they are of good oxidation-reduction property to promote VOCs oxdication reaction although they have lower BET specific surface area. On the other hand, DBD-type plasma-alone system is first tested for C7H8 removal at different parameters and is further used to elucidate the mechanism of plasma catalysis in removing C7H8. For post-plasma catalysis system, C7H8 conversion and O3 decomposition efficiency are closely correlated. For example, the highest C7H8 conversion and mineralization efficiency achieved with post-plasma catalysis system with La2CoMnO6 are 100% and 66% at 120oC, while O3 could be removed completely at 12-19 kV.
In addition, in-plasma catalysis system exhibits significant positive effect. Results indicate that C7H8 conversions and mineralization efficiencies achieved with in-plasma systems are higher than that of plasma-alone at room temperature or 120oC. For in-plasma catalysis with La2CoMnO6, the highest C7H8 conversion and mineralization efficiency are 100% and 98% at 120oC, respectively. In addition, formation of NOx could be inhibited in the presence of perovskite-type catalysts at 120oC. Overall, this study demonstrates that double perovskite-type catalysts can be applied for catalysis system for effective removal of VOCs. Further, high performance is achieved as double perovskite-type catalyst is integrated nontherma plasma to form plasma catalysis, demonstrating that double perovskite-type catalysts indeed have good potential to remove VOCs from gas streams.
關鍵字(中) ★ Perovskite-type 觸媒
★ 甲苯
★ 揮發性有機污染物
★ 催化
★ 非熱電漿
★ 電漿催化
關鍵字(英) ★ Perovskite-type catalyst
★ toluene (C7H8)
★ volatile organic compounds (VOCs)
★ catalysis
★ nonthermal plasma
★ plasma catalysis
論文目次 目錄
摘要 i
Abstract iii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 甲苯之物化特性、來源及危害 4
2.2 揮發性有機物之傳統控制技術 6
2.3 非熱電漿技術 7
2.3.1 電漿之原理 7
2.3.2 電漿之折合電場 8
2.3.3 電漿之G值 11
2.3.4 非熱電漿之種類 12
2.3.5 非熱電漿之反應與污染物破壞機制 16
2.3.6 介電質放電去除VOCs之研究 17
2.4 Perovskite-type觸媒 22
2.4.1 Perovskite-type觸媒介紹 22
2.4.2 Perovskite-type觸媒氧化機制 23
2.4.3 Perovskite-type觸媒改質介紹 31
2.4.4 Double perovskite-type觸媒 36
2.4.5 觸媒催化之反應動力探討 41
2.5 非熱電漿結合觸媒(plasma catalysis) 46
2.5.1 二階段電漿催化 (post-plasma catalysis) 46
2.5.2 Post-plasma catalysis系統之反應機制 47
2.5.3 單階段電漿催化 (in-plasma catalysis) 50
2.5.4 In plasma catalysis 系統之反應機制 51
2.5.5 非熱電漿結合觸媒之反應動力 60
第三章 研究設備與方法 68
3.1 觸媒製備方法與流程 70
3.2 觸媒表面特性與氧化還原特性分析 71
3.3 Perovskite-type觸媒活性測試系統 73
3.4 Plasma-alone與plasma catalysis之活性測試系統 75
3.5 實驗之材料與設備 78
3.6 實驗結果之計算 84
第四章 Perovskite-type觸媒去除VOC之活性 86
4.1 Perovskite-type觸媒之表面特性 86
4.2 Perovskite-type觸媒對甲苯去除之活性測試 89
4.3 Perovskite-type觸媒之H2-TPR分析 91
4.4 Perovskite-type觸媒之XPS分析 92
4.5 催化反應之動力分析 97
4.6 Double perovskite-type觸媒不同參數與長效性探討 100
4.7 Double perovskite-type觸媒對不同VOC之去除活性 101
第五章 Plasma catalysis對C7H8去除之探討 105
5.1 以plasma-alone系統去除C7H8 105
5.1.1 電壓對於plasma-alone系統去除C7H8之影響 105
5.1.2 頻率對於plasma-alone系統於去除C7H8之影響 108
5.1.3 O2濃度對於plasma-alone系統去除C7H8之影響 109
5.1.4 Ar含量對於plasma-alone系統去除C7H8之影響 110
5.1.5 H2O(g)對於plasma-alone系統去除C7H8之影響 111
5.1.7 溫度對於plasma-alone系統去除C7H8之影響 112
5.2 以post-plasma catalysis系統去除C7H8 113
5.2.1 Post-plasma catalysis系統於常溫對C7H8之去除效率 113
5.2.2 Post-plasma catalysis系統於120oC對C7H8之去除效率 114
5.3 以In-plasma catalysis系統去除C7H8 116
5.3.1 In-plasma catalysis系統於常溫對C7H8之去除效率 116
5.3.2 In-plasma catalysis系統於120oC對C7H8之去除效率 118
5.3.3 In-plasma catalysis系統之能量效率與反應動力分析 132
第六章 結論與建議 134
6.1 結論 134
6.2 建議 136

參考文獻 參考文獻
Agency for Toxic Substances and Disease Registry (ATSDR) : https://www.atsdr.cdc.gov/.
Alifanti M., Florea M., Cortes-Corberan V., Endruschat U., Delmon B., Pa?rvulescu V.I., “Effect of LaCoO3 perovskite deposition on ceria-based supports on total oxidation of VOC,” Catalysis Today, 112, 169-173 (2006).
Alifanti M, Florea M, Parvulescu V.I., “Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC,” Applied Catalysis B: Environmental, 70, 400-405 (2007).
Allah Z.A., Whitehead J.C., Martin P., “Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor,” Environmental Science & Technology, 48, 558-565 (2014).
Alvarez-Galvan M.C., de la Pena O′Shea V.A., Arzamendi G., Pawelec B., Gandia L.M., Fierro J.L.G., “Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites,” Applied Catalysis B: Environmental, 92, 445-453 (2009).
Anderson M.T., Greenwood K.B., Taylor G.A., Poeppelmeier K.R., “B-cation arrangments in double perovskites,” Progress in Solid State Chemistry, 22, 197-233 (1993).
Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J., “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of Ox, HOx, NOx and SOx species,” Atmospheric Chemistry and Physics, 4, 1461-1738 (2004).
Ban J.Y., Son Y.H., Kang M., Choung S.J., “Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS),” Applied Surface Science, 253, 535-542 (2006).
Baulch D.L., Cobos C.J., Cox R.A., Frank P., Hayman G., Just Th., Kerr J. A., Murrells T., Pilling M.J., Troe J., Walker R.W., Warnatz J, “Evaluated kinetic data for combustion modelling. supplement I,” Journal of Physical and Chemical Reference Data, 23, 847-1033 (1994).
Bielanski A., Haber J., (1990) “Oxygen in catalysis,” USA: CRC Press.
Blasin-Aube V., Belkouch J., Monceaux L., “General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3 perovskite catalyst-influence of mixture,” Applied Catalysis B: Environmental, 43, 175-186 (2003).
Blin-Simiand N., Jorand v, Magne L., “Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge,” Plasma Chemistry and Plasma Processing, 28, 429-466 (2008).
Buciuman F.C., Patcas F., Menezo J.C., “Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites: 1. Oxidation of hydrogen and propene,” Applied Catalysis B: Environmental, 35, 175-183 (2002).
Byeon J.H., Park J.H., Jo Y.S., Yoon K.Y., Hwang J., “Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor,” Journal of Hazardous Materials, 175(1-3), 417-422 (2010).
Cal M.P., Schluep M., “Destruction of benzene with non-thermal plasma in dielectric barrier discharge reactors,” Environmental Progress, 20, 151-156 (2001).
Chang M.B, Chang, C.C., “Destruction and removal of toluene and MEK from gas streams with silent discharge plasma,” AIChE Journal, 43 1325-1330 (1997).
Chang J.S., Kostov K.G., Urashima K., Yamamoto T., Okayasu Y., Kato T., Iwaizumi T., Yoshimura K., “Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems,” IEEE Transactions on Industry Applications, 36, (1251-1259) 2000.
Chang C.L., Lin T.S., “Decomposition of toluene and acetone in packed dielectric barrier discharge reactors,” Plasma Chemistry and Plasma Processing, 25, 227-243 (2005).
Chen H.L., Lee H.M., Chen S.H., Chang M.B., Yu S.J., Li S.N., "Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current Status, and suitable applications,” Environmental Science & Technology, 2009, 43, 2216-2277 (2009a).
Chen J., Su Q., Pan H., Wei J., Zhang X., Shi Y., “Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor,” Chemosphere, 75 261-265 (2009b).
Chen X., Carabineiro S.A.C., Tavares P.B., Orfao J.J.M., Pereira M.F.R., Figueiredo J.L., “Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides,” Journal of Environmental Chemical Engineering, 2, 344-355 (2014).
Chen D.L, Pan K.L., Chang M.B., “Catalytic removal of phenol from gas streams by perovskite-type catalysts,” Journal of Environmental Sciences, (2016).
Cheng D.G., Zhu X., “Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation,” Catalysis Letters, 118, 260-263 (2007).
Dang X., Qin C., Huang J., Teng J., Huang X., “Adsorbed benzene/toluene oxidation using plasma driven catalysis with gas circulation: Elimination of the byproducts,” Journal of Industrial and Engineering Chemistry, 37, 366-371 (2016).
Delagrange S., Pinard L., Tatibouet J.M., “Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts,” Applied Catalysis B: Environmental, 68, 92-98 (2006).
Demidyuk V., Whitehead J.C., “Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system,” Plasma Chemistry and Plasma Processing, 27, 85-94 (2007).
Dey G.R., Sharma A., Pushpa K.K., Das T.N., “Variable products in dielectricbarrier discharge assisted benzene oxidation,” Journal of Hazardous Materials, 178, 693-698 (2010).
Dhandapani B., Oyama S.T., “Gas phase ozone decomposition catalysts,” Applied Catalysis B: Environmental, 11, 129-166 (1997).
Ding R., Li C., Wang L., Hu R., “Biphasic intergrowth effects of La2MnNiO6–MgO composite oxide for methane catalytic combustion,” Applied Catalysis A: General, 464-465, 261-268 (2013).
Einaga H., Ibusuki T., Futamura S., “Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition,” IEEE Transactions on Industry Applications, 37, 1476-1482 (2001).
Einaga H., Futamura S., “Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone,” Reaction Kinetics and Catalysis Letters, 81, 121-128 (2004a).
Einaga H., Futamura S., “Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides,” Journal of Catalysis, 227, 304-312 (2004b).
Einaga H., Futamura S., “Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone,” Applied Catalysis B: Environmental, 60, 49-55 (2005).
Feraru S., Samoila P., Borhan A.I., Ignat M., Iordan A.R., Palamaru M.N., “Synthesis, characterization of double perovskite Ca2MSbO6 (M = Dy, Fe, Cr, Al) materials via sol-gel auto-combustion and their catalytic properties,” Materials Characterization, 84, 112-119 (2013).
Futamura S., Einaga H., Kabashima H., Hwan L.Y., “Synergistic effect of silent discharge plasma and catalysts on benzene decomposition,” Catalysis Today, 89, 89-95 (2004).
Gangwal S.K., Mullins M.E., Spovey J.J., Caffrey P.R., “Kinetics and selevtivity of deep catalytic oxidation of n-hexane and benene,” Applied Catalysis B: Environmental, 36, 231-247 (1988).
Gao B., Deng J., Liu Y., Zhao Z., Li X., Wang Y., Dai H., “Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide,” Chinese Journal of Catalysis, 34, 2223-2229 (2013).
Giroir-Fendler A., Alves-Fortunato Ma., Richard M., Wang C., Diaz J.A., Gil S., Zhang C., Can F., Bion N., Guo Y., “Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion,” Applied Catalysis B: Environmental, 180, 29-37 (2016).
Goldschmidt V.M., “Die gesetze der krystallochemie,” Die Naturwissenschaften, 14, 477-485 (1926).
Guo Y.F., Ye D.Q., Chen K.F., He J.C., Chen W.L., “Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ,” Journal of Molecular Catalysis A: Chemical, 245, 93-100 (2006a).
Guo Y.F., Ye D.Q., Chen K.F., Tian Y.F., “Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor,” Plasma Chemistry and Plasma Processing, 26, 237-249 (2006b).
Han S.B., Oda T., Ono R., “Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process,” IEEE Transactions on Industry Applications, 41, 1343-1349 (2005).
Han S.B. Oda T., “Decomposition mechanism of trichloroethylene based on byproduct distribution in the hybrid barrier discharge plasma process,” Plasma Sources Science & Technology, 16, 413-421 (2007).
Harling A.M., Glover D.J., Whitehead J.C., Zhang K., “The role of ozone in the plasma–catalytic destruction of environmental pollutants,” Applied Catalysis B: Environmental, 90, 157-161 (2009).
Hayashi K., Yasui H., Tanaka M., Futamura S., Kurita S., Aoyagi K., “Temperature dependence of toluene decomposition behavior in the discharge-catalyst hybrid reactor,” IEEE Transactions on Industry Applications, 45, 1553-1558 (2009).
Henry Weinberg W., “Eley-Rideal surface chemistry: direct reactivity of gas phase atomic hydrogen with adsorbed species,” Accounts of Chemical Research, 29, 479-487 (1996).
Hossenini S.A., Sadeghi M.T., Alemi A., Niaei A., Salari D., Kafi-Ahmadi L., “Synthesis, characterization, and performance of LaZnxFe1-xO3 perovskite nanocatalysts for toluene combustion,” Chinese Journal of Catalysis, 31, 747-750 (2010).
Hosseini S.A, Salari D., Niaei A., Oskoui S.A., “Physical–chemical property and activity evaluation of LaB0.5Co0.5O3 (B = Cr, Mn, Cu) and LaMnxCo1-xO3 (x = 0.1, 0.25, 0.5) nano perovskites in VOC combustion,” Journal of Industrial and Engineering Chemistry, 19, 1903-1909 (2013).
Hu R., Ding R., Chen J., Hu J., Zhang Y., “Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion,” Catalysis Communications, 21, 38-41 (2012).
Hu R., Bai Y., Du H., Zhang H., Du Y., Zhang J., Zhou Q., “Surface structure and catalytic performance of Sr-doped La2NiAlO6 double perovskite catalysts for methane combustion,” Journal of Rare Earths, 33, 1284-1292 (2015).
Huang H., Liu Y., Tang W., Chen Y., “Catalytic activity of nanometer La1?xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion,” Catalysis Communications, 9, 55-59 (2008).
Huang H.B., Ye D.Q., “Combination of photocatalysis downstream the nonthermal plasma reactor for oxidation of gas-phase toluene,” Journal of Hazardous Materials, 171, 535-541 (2009).
Huang H., Ye D., Leung D.Y.C., Feng F., Guan X., “Byproducts and pathways of toluene destruction via plasma-catalysis,” Journal of Molecular Catalysis A: Chemical, 336, 87-93 (2011).
Ivanova S., Perez A., Centeno M.A., Odriozola J.A., (2013) “New and future developments in catalysis catalysis,” USA: Netherlands.
Jiang N., Lu N. Vandenbroucke, Shang K., Li J., Wu Y., “Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas,” Environmental Science & Technology, 47, 9898-9903 (2013).
Jiang N., Hu J., Li J., Shang K., Lu N., Wu Y., “Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxidecatalysts using hybrid surface/packed-bed discharge plasmas,” Applied Catalysis B: Environmental, 184, 355-363 (2016).
Kim H.H., Lee Y.H., Ogata A., Futamura S., “Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition,” Catalysis Communications, 4, 347-351 (2003).
Kim H.H., Oh S.M., Ogata A., Futamura S., “Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst,” Applied Catalysis B: Environmental, 56, 213-220 (2005).
Kim H.H., Ogata A., Futamura S., “Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma,” Applied Catalysis B: Environmental, 79, 356-367 (2008).
Koppmann R., (2010) “Handbook of hydrocarbon and lipid microbiology,” Germany: Springer.
Lee H.M., Chang M.B., “Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor,” Plasma Chemistry and Plasma Processing, 21, 329-343 (2001).
Lee B.Y., Park S.H., Lee S.C., Kang M., Choung S.J., “Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system,” Catalysis Today, 93-95, 769-776 (2004).
Li J.W., Pan K.L., Yu S.J., Yan S.Y., Chang M.B., “Removal of formaldehyde over MnxCe1-xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation,” Journal of Environmental Sciences, 26, 2546-2553 (2014a).
Li Y., Fan Z., Shi J., Liu Z., Shangguan W., “Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts,” Chemical Engineering Journal, 241, 251-258 (2014b).
Li N., Boreave A., Deloume J.P., Gaillard F., “Catalytic combustion of toluene over a Sr and Fe substituted LaCoO3 perovskite,” Solid State Ionics, 179, 1396-1400 (2008).
Li C., Wang W., Zhao N., Liu Y., He B., Hu F., Chen C., “Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mg1-xMnxMoO6-δ,” Applied Catalysis B: Environmental, 102, 78-84 (2011).
Li J., Hu R., Zhang J., Meng W., Du Y., Si Y., Zhang Z., “Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion,” Fuel, 178, 148-154 (2016).
Liang H., Hong Y., Zhu C., Li S., Chen Y., Liu Z., Ye D., “Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts,” Catalysis Today, 201, 98-102 (2013).
Liang P., Jiang W., Zhang L., Wu J., Zhang J., Yang D., “Experimental studies of removing typical VOCs by dielectric barrier discharge reactor of different sizes,” Process Safety and Environmental Protection, 94, 380-384 (2015).
Lisi L., Bagnasco G., Ciambelli,P., Rossi S.D., “Perovskite-type oxides II. redox properties of LaMn1-xCuxO3 and LaCo1-xCuxO3 and methane catalytic combustion,” Journal of Solid State Chemistry, 146, 176-183 (1999).
Liu C. J., Mallinson R., Lobban L., “Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma,” Journal of Catalysis, 179, 326-334 (1998).
Liu C.J., Zou J., Yu K., Cheng D., Han Y., Zhan J., Ratanatawanate C., Jang B.W.L., “Plasma application for more environmentally friendly catalyst preparation,” Pure and Applied Chemistry, 78, 1227-1238 (2006).
Liu G., Li J., Yang K., Tang W., Liu H., Yang J., Yue R., Chen Y., “Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1?xCexMnO3 catalysts,” Particuology, 19, 60-68 (2015).
Lu B., Zhang X., Yu X., Feng T., Yao S., “Catalytic oxidation of benzene using DBD corona discharges,” Journal of Hazardous Materials, 137, 633-637 (2006).
Luo Y., Wang K., Chen Q., Xu Y., Hun Xue H., Qian Q., “Preparation and characterization of electrospun La1?xCexCoOδ application to catalytic oxidation of benzene,” Journal of Hazardous Materials, 296, 17-22 (2015).
Magureanu M., Mandache N.B., Eloy P., Gaigneaux E.M., Parvulescu V.I., “Plasma-assisted catalysis for volatile organic compounds abatement,” Applied Catalysis B: Environmental, 61, 12-20 (2005).
Magureanu M., Mandache N.B., Gaigneaux E., Paun C., Parvulescu V.I., “Toluene oxidation in a plasma-catalytic system,” Journal of Applied Physics, 99 (2006).
Magureanu M., Mandache N.B., Hu J.C., Richards R., Florea M., Parvulescu V.I., “Plasma-assisted catalysis total oxidation of trichloroethylene over gold nanoparticles embedded in SBA-15 catalysts,” Applied Catalysis B: Environmental, 76, 275-281 (2007a).
Magureanu M., Mandache N.B., Parvulescu V.I., Subrahmanyam C., Renken A., Kiwi-Minsker L., “Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode,” Applied Catalysis B: Environmental, 74, 270-277 (2007b).
Markova-Velichkova M., Lazarova T., Tumbalev V., Ivanov G., Kovacheva D., Stefanov P., Naydenov A., “Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts,” Chemical Engineering Journal, 231, 236-244 (2013).
Nguyen Dinh M.T., Giraudon J.-M., Lamonier J.-F., Vandenbroucke A., De Geyter N., Leys C., Morent R., “Plasma-catalysis of low TCE concentration in air using LaMnO3δas catalyst,” Applied Catalysis B: Environmental, 147, 904-911 (2014).
Nicole J., Tsiplakides D., Wodiunig S., Comninellis C., “Activation of catalyst for gas-phase combustion by electrochemical pretreatment,” Journal of The Electrochemical Society, 144, L312-L314 (1997).
NIST Chemistry WebBook: https://www.nist.gov/ (2016).
Niu J., Deng J., Liu W., Zhang L., Wang G., Dai H., He H., Zi X., “Nanosized perovskite-type oxides La1-xSrxMO3-δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate,” Catalysis Today, 126, 420-429 (2007).
Oda T., Takahashi T., Kohzuma S., “Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects,” IEEE Transactions on Industry Applications, 37, 965-970 (2001).
Oda T., Takahahshi T., Yamaji K., “Nonthermal plasma processing for dilute VOCs decomposition,” IEEE Transactions on Industry Applications, 38, 873-878 (2002).
Oda T., Yamaji K., Takahashi T., “Decomposition of dilute trichloroethylene by nonthermal plasma processing-gas flow rate, catalyst, and ozone effect,” IEEE Transactions on Industry Applications, 40, 430-436 (2004).
Ogata A., Shintani N., Mizono K., Kushiyama S., Yamamoto T., “Decomposition of benzene using a non-thermal plasma reactor packed with ferroelectric pellets,” IEEE Transactions on Industry Applications, 35, 753-759 (1999).
Ogata A., Ito D., Mizuno K., Kushiyama S, Yamamoto T., “Removal of dilute benzene using a zeolite-hybrid plasma reactor,” IEEE Transactions on Industry Applications, 37 959-964 (2001)
Ogata A., Ito D., Mizuno K., Kushiyama S., Gal A., Yamamoto T., “Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor,” Applied Catalysis A: General, 236, 9-15 (2002).
Ogata A., Einaga H., Kabashima H., Futamura S., Kushiyama S., Kim H.H., “Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air,” Applied Catalysis B: Environmental, 46, 87-95 (2003).
Ognier S., Cavadias S., Amouroux J., “Aromatic VOC removal by formation of microparticles in pure nitrogen discharge,” Plasma Processes and Polymers, 4, 528-536 (2007).
Ohsawa A., Morrow R., Murphy A.B., “An investigation of a DC dielectric barrier discharge using a disc of glass beads,” Journal of Physics D: Applied Physics, 33, 1487-1492 (2000).
Pan K.L., Yu S.J., Yan S.Y., Chang M.B., “Direct N2O decomposition over La2NiO4-based perovskite-type oxides,” Journal of the Air & Waste Management Association, 64, 1260-1269 (2014).
Park D.W., Yoon S.H., Kim G.J., Sekiguchi H., “The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge,” Journal of Industrial and Engineering Chemistry, 8, 393-398 (2002).
Pecchi G., Reyes P., Zamora R., Cadus L.E., Fierro J.L.G., Surface properties and performance for VOCs combustion of LaFe1-yNiyO3 perovskite oxides,” Journal of Solid State Chemistry, 181, 905-912 (2008).
Pekarek S., “Non-thermal plasma ozone generation,” Acta Polytechnica, 43, 47-51 (2003).
Penetrante B.M., Hsiao M.C., Merritt B.T., Vogtlin G.E., Wallman P.H., “Comparison of electrical discharge techniques for nonthermal plasma processings of NO in N2,” IEEE Transactions on Plasma Science, 23, 679-687 (1995).
Poppe J., Volkening S., Schaak A., Schutz E., Janek J., Irnbihl R., “Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions,” Physical Chemistry Chemical Physics, 1, 5241-5249 (1999).
Rezlescu N., Rezlescu E., Popa P.D., Doroftei C., Ignat M., “Some nanograined ferrites and perovskites for catalytic combustion of acetone at low temperature,” Ceramics International, 41, 4430-4437 (2015).
Rousseau S., Loridant S., Delichere P., Boreave A., Deloume J.P., Vernoux P., “La(1-x)SrxCo1-yFeyO3 perovskites prepared by so-gel method: Characterization and relationships with catalytic properties for total oxidation of toluene,” Applied Catalysis B: Environmental, 88, 438-447 (2009).
Sinquin G., Petit C., Hindermann J.P., Kiennemann A., “Study of the formation of LaMO3 (M = Co, Mn) perovskites by propionates precursors: Application to the catalytic destruction of chlorinated VOCs,” Catalysis Today, 70, 183-196 (2001).
Spinicci R., Faticanti M., Marini P., de Rossi S., Porta P., “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion,” Journal of Molecular Catalysis A: Chemical, 197, 147-155 (2003).
Steward E.G., Rooksby H.P., “Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type”, Acta Crystallographica, 4, 503-507 (1951).
Subrahmanyam C., Magureanu M., Laub D., Renken A., Kiwi-Minsker L., “Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis,” Journal of Physical Chemistry C, 111, 4315-4318 (2007).
Sutthiumporn K., Maneerung T., Kathiraser Y., Kawi S., “CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression,” International Journal of Hydrogen Energy, 37, 11195-11207 (2012).
Szabo V., Bassir M., Van Neste A., Kaliaguine S., “Perovskite-type oxides synthesized by reactive grinding: Part II: Catalytic properties of LaCo(1?x)FexO3 in VOC oxidation,” Applied Catalysis B: Environmental, 37,175-180 (2002).
Takaki K., Chang J.S., Kostov K.G., “Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor part I: Modeling,” IEEE Transactions on Dielectrics and Electrical Insulation, 11, 481-490 (2004a).
Takaki K., Urashima K., Chang J.S., “Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type non-thermal plasma reactor,” IEEE Transactions on Plasma Science, 32, 2175-2183 (2004b).
Tang X., Feng F., Ye L., Zhang X., Huang Y., Liu Z., Yan K., “Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts,” Catalysis Today, 211, 39-43 (2013).
Tas M.A., “Plasma-induced catalysis: A feasibility study and fundamentals,” Ph. D. Dissertation, Eindhoven University of Technology, Dutch (1995).
Than Quoc An H., Pham Huu T., Le Van T., Cormier J.M., Khacef A., “Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal,” Catalysis Today, 176, 474-477 (2011).
Thomas A., Zhu J., “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92, 225-233 (2009).
Tichenor B.A., Palazzolo M.A., “Destruction of volatile organic compounds via catalytic incineration,” Environmental Progress & Sustainable Energy, 3, 172-176 (1987).
Toby S., Van de Burgt L.J., Toby F.S., “Kinetics and chemiluminescence of ozone-aromatic reactions in the gas phase,” The Journal of Physical Chemistry, 89, 1982-1986 (1985).
Trushkin A.N., Kochetov I.V., “Simulation of toluene decomposition in a pulseperiodic discharge operating in a mixture of molecular nitrogen and oxygen,” Plasma Physics Reports, 38, 407-431 (2012).
USEPA, “Control techniques for volatile organic emissions from stationary,” U.S.EPA, EPA-450/2-78-022 (1978).
USEPA:https://www3.epa.gov/airtoxics/hlthef/toluene.html?viewType=Print&viewClass=Print (2016).
Vandenbroucke A., Morent R., De Geyter N., Nguyen Dinh M.T., Giraudon J.M., Lamonier J.-F., Leys C., “Plasma-catalytic Decomposition of TCE,” International Journal of Plasma Environmental Science & Technology, 4, 135-138 (2010).
Vandenbroucke A.M., Morent R., De Geyter N., Leys C., “Non-thermal plasmas for non-catalytic and catalytic VOC abatement,” Journal of Hazardous Materials, 195, 30-54 (2011).
Van Durme J., Dewulf J., Leys C., Van Langenhove H., “Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review,” Applied Catalysis B: Environmental, 78, 324-333 (2008).
Vasala S., Karppinen M., “A2B’B’’O6 perovskites: A review,” Progress in Solid State Chemistry, 43, 1-36 (2015).
Vayenas C.G., Bebelis S., Ladas S., “Dependence of catalytic rates on catalyst work function,” Nature, 343, 625-627 (1990).
Voorhoeve R.J.H., Remeika J.P., Trimble L.E., “Defectt chemistry and catalysis in oxidation and reduction over perovskite-type oxides,” Annals of the New York Academy of Sciences, 272, 3-21 (1976).
Voorhoeve R.J.H., Johnson D.W.J, Remeika J.P., Gallagher P.K., “Perovskite oxides: materials science in catalysis,” Science, 195, 827-833 (1977).
Wagner C., “Adsorbed atomic species as intermediates in heterogeneous catalysis” Advances in Catalysis, 21, 323-381 (1970).
Wang L, He H., Zhang C., Wang Y., Zhang B., “Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene,” Chemical Engineering Journal, 288, 406-413 (2016).
Wang X., Zuo J., Luo Y., Jiang L., “New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation,” Applied Surface Science, 396, 95-101 (2017).
Wu J. Xia Q., Wang H., Li Z., “Catalytic performance of plasma catalysis system with nickeloxide catalysts on different supports for toluene removal:Effect of water vapor,” Applied Catalysis B: Environmental, 156-157, 265-272 (2014).
Xu X., Wu J., Xu W., He M., Fu M., Chen L., Zhu A., Ye D., “High-efficiency non-thermal plasma-catalysis of cobalt incorporatedmesoporous MCM-41 for toluene removal,” Catalysis Today, (2016).
Ye Z.L., Zhang Y.N., Li P., Yang L.Y., Zhang R.X., Hou H.Q., “Feasibility of destruction of gaseous benzene with dielectric barrier discharge,” Journal of Hazardous Materials, 156, 356-364 (2008).
Zhang C.H., Guo Y.L., Guo Y., Lu G.Z., Boreave A., Retailleau L., Baylet A., Giroir-Fendler A., “LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene,” Applied Catalysis B: Environmental, 148-149, 490-498 (2012).
Zhang C., Wang C., Zhan W, Guo Y., Guo Y., Lu G., Baylet A., Giroir-Fendler A., “Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts,” Applied Catalysis B: Environmental, 129, 509-516 (2013).
Zhang J., Tan D., Meng Q., Weng X., Wu Z., “Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance,” Applied Catalysis B: Environmental, 172-173,18-26 (2015).
Zhao Z., Yang X., Wu Y., “Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO,” Applied Catalysis B: Environmental 8, 281-297 (1996).
Zhao K., ShenY., He F., Huang Z., Wei G., Zheng A., Li H., Zhao Z., “Preparation of double perovskite-type oxide LaSrFeCoO6 for chemical looping steam methane reforming to produce syngas and hydrogen,” Journal of Rare Earths, 34, 1032-1040 (2016).
Zheng C., Zhu X., Gao X., Liu L., Chang Q., Luo Z., Cen K., “Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor,” Journal of Industrial and Engineering Chemistry, 20, 2761-2768 (2014).
Zou J.J., Zhang Y.P., Liu C.J., “Reduction of supported noble-metal ions using glow discharge plasma,” Langmuir, 22, 11388-11394 (2006).
Zhu J., Thomas A., “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92, 225-233 (2009).
Zhu T., Li J., Jin Y.Q., Liang Y.H., Ma G.D., “Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst,” International Journal of Environmental Science and Technology, 6, 141-148 (2009).
Zhu Y., Sun Y., Niu X., Yuan F., Fu H., “Preparation of La-Mn-O perovskite catalyst by microwave irradiation method and its application to methane combustion,” Catalysis Letters, 135, 152-158 (2010).
Zhu T., Wan Y.D., Li J., He X.W., Xu D.Y., Shu X.Q., Liang W.J., Jin Y.Q., “Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts,” International Journal of Environmental Science and Technology, 8, 621-630 (2011).
Zhu X., Gao X., Yu X., Zheng C., Tu X., “Catalyst screening for acetone removal in a single-stageplasma-catalysis system,” Catalysis Today, 256, 108-114 (2015).
Zhu X., Tu X., Mei D., Zheng C., Zhou J., Gao X., Luo Z., Ni M., Cen K., “Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method,” Chemosphere, 155, 9-17 (2016).
李灝銘,「以低溫電漿去除揮發性有機物之研究」,國立中央大學環境工程研究所博士論文,台灣,(2001)。
陳信良,「數值模式輔助非熱電漿技術效能改善之研究」,國立中央大學環境工程研究所博士論文,台灣(2009)。
行政院勞工委員會職業訓練局南區職業訓練中心: http://ercs.tajen.edu.tw/downloads/toluene1.pdf.
黃柳青,「化工動力學與反應設計下冊」,科技出版社,(1993)。
呂立德,「化工動力與化工熱力」,立功出版社,(1991)。
指導教授 張木彬(Moo-Been Chang) 審核日期 2017-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明