博碩士論文 993407002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.144.3.200
姓名 郭信宏(Shin-Hong Kuo)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種應用於類面光源陣列的光場演算技術之研究
(Study of Optical Field Calculation Method for an Array of Extended Source)
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出一種適用於類面光源的演算技術,利用單光源在目標平面上的輻射照度、光照度分佈以最小平方法進行函數化成為一個光分佈函數 (light spread function, LSF),來處理類面光源於近場距離時,輻射強度隨距離而變化的光學設計問題,此光分佈函數為目標面上輻射照度與距離的關係函數,可以藉由數值方法快速計算光源和光源、光源和反射面之間的距離,以達到目標面上的均勻度要求。對於光學設計中反射面的輻射照度分佈計算,我們提出建構虛擬光源的方法,用來近似計算光線經過鋁的鏡面反射面後在目標面產生的輻射照度分佈。在客觀的使用朗伯光源、蝙蝠型光源以及準直光源進行光分佈函數技術的精準度計算,多光源搭配多種排列條件下,比較光分佈函數計算和光學模擬軟體得到的輻射照度分佈,平均絕對誤差百分比 (mean absolute percentage error, MAPE) 可在1.5% 以下,以蝙蝠形光源比較單一以及直角鋁反射面的結果,MAPE可在1% 以下。
為了驗證光分佈函數設計方法的可行性,我們將光分佈函數設計方法應用於設計一款直下式背光燈箱以及兩款平行曝光機,直下式背光燈箱 (direct backlight unit, DBLU)使用36顆蝙蝠型光源,其背光燈箱厚度20 mm,搭配反射率 90% 的鋁反射面,經過光分佈演算法的排列計算後,將演算法所計算參數建入光學模擬軟體中,在不加光學膜片下,均勻度可達99.25%。以相同的參數實際試製一組直下式背光燈箱,比較光分佈計算和實驗試製的結果,MAPE在單一量測方向 x軸 、 y = x 分別為0.64% 、 0.92%,而試製的直下式背光燈箱在九點的均勻度量測下可達96.68%。以光分佈函數法對於步進式和掃描式 UV-LED平行曝光機進行設計,經過光分佈函數法計算後,解決光學設計上對於光源間距、光源旋轉角度以及鋁反射面傾斜角度的問題,使得目標面積內的均勻度可達97%以上,並且平均輻射照度和輻射強度半強角皆可達到曝光機的需求,明顯可見,光分佈函數法計算提供一種準確的設計方法,使得設計者可以解決近場光學的設計問題,並且可以根據設計者需求快速地計算光源陣列和反射面所產生的輻射照度分佈。
摘要(英) In this thesis, we will propose a method of optical field calculation to accurately calculate the source-to-source spacing and the source-to-reflective-plane spacing of the extended source to obtain uniform illumination into the target plane. A light spread function (LSF) that is composed of a two-term Gaussian function from nonlinear least squares method will be utilized to simulate the illuminance and irradiance distribution of each extended source on the target plane. The LSF will be a function of the illuminance and distance, and the illuminance of the source on the target plane can be derived using the LSF. In the optical system, the energy of the mirror reflected rays can be approximated using a virtual source. Under various arrangement conditions in the optical system, when comparing the results of LSF and optical design software for the entire target plane, the mean absolute percentage error (MAPE) can be lower than 1.5%. The effect of the rays reflected by the sides of a reflective plane and a corner reflective plane was also considered and calculated using the LSF. When comparing the results calculated using the LSF method for the entire target plane with the results from the optical design software, the MAPE can be lower than 1.0%.
Furthermore, to verify the feasibility of illuminance and irradiance calculation for the optical system, a direct backlight unit (DBLU), a step-and-repeat collimated exposure and a scanning collimated exposure were designed using the calculated spacing. Consider a DBLU with 36 batwing sources in a rectangular arrangement with a backlight box thickness of 20 mm. The reflectivity of the backlight box is 0.9. We calculated the uniformity of 9 points without adding any optical films. The illuminance uniformity from LSF was 99.25%. After assembling a prototype of the DBLU with the same parameters, the illuminance uniformity was found to be 96.68%. When comparing the results from the LSF and measured data at y = x and x axis for the DBLU, the MAPE values were 0.92% and 0.46%, respectively. The collimated exposure were designed by the calculated rotation angle of light source and tilt angle of reflective plane. After simulating by the optical design software, the average irradiance and the half angle of radiant intensity can achieve the demand of collimated exposure, and the irradiance uniformity was better than 97%. It is apparent that in the design of a thin DBLU, the LSF calculation provides a more precise design method, which enables designers to simply choose sources and arrangement patterns according to the requirements of an optical system.
關鍵字(中) ★ 面光源
★ 點光源
★ 光分佈函數
★ 紫外光曝光機
★ 直下式背光模組
關鍵字(英) ★ Extended source
★ Point source
★ Light spread function
★ UV-LED esposure
★ Direct backlight unit
論文目次 摘要…………………………………….……………………………………... I
Abstract…………………………………….………………………………… II
誌謝……………………………………...……………………………………. III
目錄…………………………………….……………………………………... IV
表目錄……….………………………………………….……….…………… VI
圖目錄……….………………………….…………………………………….. VII
符號說明……….……………………..…….………………………………… XV
一、緒論……….………………………………..……….………………… 1
1-1研究背景……….……….….…………………………………….. 1
1-2研究動機與目的……….………………………………………… 3
二、面輻射源理論與分析……….………………………………………... 7
2-1朗伯輻射源照度關係……….…………………………………… 8
2-2軸上圓盤面輻射源照度關係……………………………………. 10
2-3離軸圓盤面輻射源照度關係……….…………………………… 11
2-4面輻射源輻射強度的變化……….……………………………… 14
2-5光場函數化應用……….………………………………………… 15
三、光分佈函數理論與分析……….……………………………………... 16
3-1光分佈函數擬合……….………………………………………… 16
3-1-1非線性最小平方迴歸法……….…………………………... 16
3-1-2朗伯光源的光分佈函數……….…………………………... 20
3-2光分佈函數應用於多光源計算……….………………………… 26
3-2-1多光源光分佈函數的疊加……….………………………... 26
3-2-2多光源光分佈函數的平坦分佈計算……….……………... 27
3-2-3多光源光分佈函數平坦分佈的比較……….……………... 30
四、光分佈函數於設計直下式背光燈箱之應用……….……………….. 33
4-1直下式背光燈箱光源……….…………………………………… 34
4-2光分佈函數於直下式燈箱中的反射計算………………………. 40
4-2-1直下式燈箱中單一鋁反射面計算………………………… 40
4-2-2直下式燈箱中直角鋁反射面計算………………………… 44
4-3光分佈函數設計直下式背光燈箱………………………………. 47
4-4直下式背光燈箱驗證……………………………………………. 50
五、光分佈函數於設計平行曝光機之應用……………………………… 52
5-1平行曝光機光源……………………………………………………. 53
5-1-1 UV-LED準直光源……………………………………………. 53
5-1-2準直光源光分佈函數………………………………………… 57
5-2 PCB平行曝光機的光源排列設計…………………………………. 61
5-3 PCB平行曝光機反射元件設計……………………………………. 69
5-3-1光分佈函數應用於傾斜反射面設計………………………… 69
5-3-2 PCB平行曝光機設計結果…………………………………… 74
5-4掃描式PCB平行曝光機光源排列設計…………………………… 77
5-5掃描式PCB平行曝光機設計成果………………………………… 85
六、結論與未來展望………………………………………………………… 89
5-1 結論………………………………………………………………… 89
5-2 未來展望…………………………………………………………… 90
參考文獻……………………………………………………………………… 91
已發表之論文………………………………………………………………… 97
參考文獻 [1] Bardsley, N., Bland, S., Pattison, L., Pattison, M., Stober, K., Welsh, F., & Yamada, M. (2014). Solid-state lighting research and development multi-year program plan. US Department of Energy.
[2] Whang, A. J. W., Chen, Y. Y., & Teng, Y. T. (2009). Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays. Journal of display technology, Vol. 5(3), pp. 94-103.
[3] Wang, K., Wu, D., Qin, Z., Chen, F., Luo, X., & Liu, S. (2011). New reversing design method for LED uniform illumination. Optics express, Vol. 19(104), pp. A830-A840.
[4] Moreno, I., Avendaño-Alejo, M., & Tzonchev, R. I. (2006). Designing light-emitting diode arrays for uniform near-field irradiance. Applied optics, Vol. 45(10), pp. 2265-2272.
[5] Hecht, E. (2002). Optics, 4th. International edition, Addison-Wesley, San Francisco, 3.
[6] Moreno, I., Sun, C. C., & Ivanov, R. (2009). Far-field condition for light-emitting diode arrays. Applied optics, Vol. 48(6), pp. 1190-1197.
[7] Sun, C. C., Chien, W. T., Moreno, I., Hsieh, C. C., & Lo, Y. C. (2009). Analysis of the far-field region of LEDs. Optics express, Vol. 17(16), pp. 13918-13927.
[8] Kim, B., Kim, H., & Kang, S. (2011). Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity. Optics express, Vol. 19(3), pp. 1794-1807.
[9] Situ, W., Han, Y., Li, H., & Luo, Y. (2011). Combined feedback method for designing a free-form optical system with complicated illumination patterns for an extended LED source. Optics express, Vol. 19(105), pp. A1022-A1030.
[10] Luo, Y., Feng, Z., Han, Y., & Li, H. (2010). Design of compact and smooth free-form optical system with uniform illuminance for LED source. Optics express, Vol. 18(9), pp. 9055-9063.
[11] 田登, 大. (2007). 色彩工程學: 理論與應用. 全華圖書股份有限公司.
[12] Smith, W. J. (1966). Modern optical engineering. Tata McGraw-Hill Education.
[13] Mahajan, V. N. (1998). OPTICAL IMAGING AND ABERRATIONS: PART I: RAY GEOMETRICAL OPTICS. Bellingham: SPIE-The International Society for Optical Engineering.
[14] Sun, C. C., Lee, T. X., Ma, S. H., Lee, Y. L., & Huang, S. M. (2006). Precise optical modeling for LED lighting verified by cross correlation in the midfield region. Optics letters, Vol. 31(14), pp. 2193-2195.
[15] Parent, A., Morin, M., & Lavigne, P. (1992). Propagation of super-Gaussian field distributions. Optical and quantum electronics, Vol. 24(9), pp. S1071-S1079.
[16] Gori, F. (1994). Flattened gaussian beams. Optics Communications, Vol. 107(5), pp. 335-341.
[17] Palma, C., & Bagini, V. (1994). Propagation of super-Gaussian beams. Optics communications, Vol. 111(1), pp. 6-10.
[18] Hoffnagle, J. A., & Jefferson, C. M. (2003). Beam shaping with a plano-aspheric lens pair. Optical Engineering, Vol. 42(11), pp. 3090-3099.
[19] Moreno, I., & Sun, C. C. (2008). Modeling the radiation pattern of LEDs. Optics express, Vol. 16(3), pp. 1808-1819.
[20] Cheng, Y. K., Lu, Y. H., Tien, C. H., & Shieh, H. P. (2009). Design and evaluation of light spread function for area-adaptive LCD system. Journal of display technology, Vol. 5(2), pp. 66-71.
[21] Svilainis, L., & Dumbrava, V. (2010). Numerical comparison of LED directivity approximation functions for video displays. Displays, Vol. 31(4), pp. 196-204.
[22] Han, Y. K., Song, W. J., Cho, B., Hong, H., & Oh, E. (2011, January). A backlight simulator for an edge-type backlight unit in local dimming systems. InConsumer Electronics (ICCE), 2011 IEEE International Conference on IEEE. pp. 655-656.
[23] Lindfield, G., & Penny, J. (2012). Numerical methods: using MATLAB. Academic Press.
[24] Vithal A. Patel. (1994). Numerical Analysis, Saunders College. pp. 315-316.
[25] Maron, M. J., & Lopez, R. J. (1982). Numerical analysis: a practical approach. New York: Macmillan. pp. 230-232.
[26] Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons. pp. 15-17.
[27] Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J., & Klar, T. A. (2013). 120 nm resolution and 55 nm structure size in STED-lithography. Optics express, Vol. 21(9), pp. 10831-10840.
[28] Sparrow, C. M. (1916). On spectroscopic resolving power. The Astrophysical Journal, Vol. 44, pp. 76.
[29] Reynolds, G. O., Develis, J. B., Parrent, G. B., & Thompson, B. (1989). The new physical optics notebook: tutorials in Fourier optics (Vol. 61). New York: SPIE Optical Engineering Press. pp. 38–45.
[30] Zhang, X. B., Wang, R., Dong, D., Han, J. H., & Wu, H. X. (2012). Dynamic backlight adaptation based on the details of image for liquid crystal displays.Journal of Display Technology, Vol. 8(2), pp. 108-111.
[31] Burini, N., Nadernejad, E., Korhonen, J., Forchhammer, S., & Wu, X. (2013). Modeling power-constrained optimal backlight dimming for color displays.Journal of Display Technology, Vol. 9(8), pp. 656-665.
[32] Wu, R., Zheng, Z., Li, H., & Liu, X. (2012). Optimization design of irradiance array for LED uniform rectangular illumination. Applied optics, Vol. 51(13), pp. 2257-2263.
[33] Zhu, Z. M., Liu, H., & Chen, S. M. (2015). The design of diffuse reflective free-form surface for indirect illumination with high efficiency and uniformity. IEEE Photonics Journal, Vol. 7(3), pp. 1-10.
[34] Zheng, J., & Qian, K. (2013). Designing single LED illumination distribution for direct-type backlight. Applied optics, Vol. 52(28), pp. 7022-7027.
[35] OSRAM webside : https://moderndevice.com/wp-content/uploads/2011/08/Luxeon-I.pdf
[36] Chen, C. F., Wu, C. C., & Wu, J. H. (2010). Modified wide radiating lenses of the power-chip light emitting diodes for a direct-lit backlight. Optik-International Journal for Light and Electron Optics, Vol. 121(9), pp. 847-852.
[37] Cho, D., Oh, W. S., & Moon, G. W. (2011). A novel adaptive dimming LED backlight system with current compensated XY channel drivers for LCD TVs.Journal of Display Technology, Vol. 7(1), pp. 29-35.
[38] OSRAM webside : http://www.osram-os.com/osram_os/en/products/product-catalog/led-light-emitting-diodes/platinum-dragon/lcw-w5sn/index.jsp
[39] Chang, R. S., Tsai, J. Z., Li, T. Y., & Liao, H. L. (2012). LED backlight module by lightguide-diffusive component. Journal of Display Technology, Vol. 8(2), pp. 79-86.
[40] Martin, J. W., Nguyen, T., Byrd, E., Dickens, B., & Embree, N. (2002). Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus. Polymer degradation and stability, Vol. 75(1), pp. 193-210.
[41] Lin, B. J. (1975). Deep UV lithography. Journal of Vacuum Science & Technology, Vol. 12(6), pp. 1317-1320.
[42] Kim, J. J. K., Paik, S. J., Herrault, F., & Allen, M. G. (2012). UV-LED lithography for 3-D high aspect ratio microstructure patterning. In 14th Solid State Sensors, Actuators, and Microsystems Workshop. pp. 481-484.
[43] Ushio America, Inc. webside : http://www.ushio.com.tw/documents/products/lamp/ushio_discharge_lamps.pdf
[44] Saraf, S., Balakrishnan, K., Buchman, S., Byer, R., Faied, D., Hanson, J, & Soulage, M. (2014, November). UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255nm. In Latin America Optics and Photonics Conference. Optical Society of America. LM2A-4.
[45] Bowker, C., Sain, A., Shatalov, M., & Ducoste, J. (2011). Microbial UV fluence-response assessment using a novel UV-LED collimated beam system. Water research, Vol. 45(5).
[46] Li, Y., Wu, P., Luo, Z., Ren, Y., Liao, M., Feng, L., ... & He, L. (2015). Rapid fabrication of microfluidic chips based on the simplest LED lithography. Journal of Micromechanics and Microengineering, Vol. 25(5), pp. 055020.
[47] Chen, J. J., & Lin, C. T. (2010). Freeform surface design for a light-emitting diode–based collimating lens. Optical Engineering, Vol. 49(9), pp. 093001-093001.
[48] Wang, G., Wang, L., Li, F., & Zhang, G. (2012). Collimating lens for light-emitting-diode light source based on non-imaging optics. Applied optics, Vol. 51(11), pp. 1654-1659.
[49] Chen, J. J., Wang, T. Y., Huang, K. L., Liu, T. S., Tsai, M. D., & Lin, C. T. (2012). Freeform lens design for LED collimating illumination. Optics express, Vol. 20(10), pp. 10984-10995.
[50] NICHIA corporation wabside : https://www.nichia.co.jp/specification/products/led/NCSU276A-E.pdf
[51] Dow Corning Corporation wabside : http://www.dowcorning.com/applications/search/default.aspx?R=11534EN
[52] Hass, G., & Waylonis, J. E. (1961). Optical constants and reflectance and transmittance of evaporated aluminum in the visible and ultraviolet. JOSA, Vol. 51(7), pp. 719-722.
[53] Bennett, H. E., Silver, M., & Ashley, E. J. (1963). Infrared reflectance of aluminum evaporated in ultra-high vacuum. JOSA, Vol. 53(9), pp. 1089-1095.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明