博碩士論文 994201024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:35.175.172.211
姓名 雷秉翰(Ping-han Lei)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 辨別含有可疑內容網路產品評論之研究
(Identify the online product comments with suspicious content)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 利用資料探勘技術探討北台灣地區機動車輛稅費繳納模式★ 以資料挖礦方法發掘臍帶血品質診斷規則
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現今這個網路發達的時代,「網路口碑」比起傳統的口碑行銷更具影響力, 企業必須重視顧客之間經驗交流及「網路口碑」所帶來的影響。「網路口碑」可 為企業帶來正面和負面的效果,顧客在網路上發表使用過產品的心得,讓潛在消 費者能夠更了解產品特性,產品討論度提高也為企業帶來知名度;關於產品的流 言或負面謠言也可能在網路上流傳,虛假不實或誇大的內容對產品和企業商譽都 可能帶來重大傷害。
本研究以謠言作為研究核心,探討謠言的組成要件及網路謠言的影響層面, 以智慧型手機之網路謠言作為分析對象,將謠言組成要件分為兩項:產品之重要 屬性以及文章中模糊性詞彙數量。根據謠言相關研究及漢語詞性的研究分類,發 展出分類漢語謠言文章的模型與詞庫,並運用文字探勘技術,對網路產品評論文 章進行分析與比對,建立出一套可自動分類出謠言文章的方法。
本研究所發展出的模型結果發現,含有產品之重要屬性詞彙以及模糊性詞彙 愈多且總字數愈少的文章,其內容為謠言的可能性越高,研究結果也顯示模型可 有效區隔出謠言與正常反應問題之文章,使用本研究收集之訓練資料其效果為精 確度(Precision)=71.43%,召回率(Recall)=73.5%,F-measure=72.45%; 測試資料之效果為精確度(Precision)=80%,召回率(Recall)=73.73%,F-measure =76.19%。
摘要(英) Internet is the most rapidly growing communication medium for marketing. Not only the companies could promote their latest product online, but also the consumers could make comments and product reviews. The online reviews written by the consumers are more persuasive than the advertisement or official statement because of its objectivity. If there are some product defects, the information could be founded in online product reviews written by different people. On the other hand, well-designed products could be highly thought of and praised by their customers. Recently, people who need more information about the goods they planned to purchase will look for the online product reviews before the purchasing. This is how “Electronic Word-of-mouth” (eWOM) influences or even changes the purchasing decision.
The purpose of this research is to identify the worst kind of the online product reviews: rumors. Rumors could cause serious damage to company’s goodwill and the sale of the product. In this study, we developed a new method that combined the research of rumors and the text mining techniques. Breaking the content of online product review into two components, and then use the “Keyword matching” technique to evaluate whether it is a rumor article. The result of this method shows that it could precisely identify those rumor articles from bunch of online product reviews. We could use it as a filter when we search for product information and make a better and more suitable buying decision.
關鍵字(中) ★ 網路口碑
★ 文字探勘
★ 謠言
★ 網路謠言
★ 模糊性詞語
★ 網路產品評論
關鍵字(英) ★ Electronic Word-of-mouth (eWOM)
★ Text mining
★ Rumors
★ Fuzzy words
論文目次 中文摘要...I
英文摘要...II
誌謝...III
目錄...IV
圖目錄...V
表目錄...VI
一、緒論...1
1-1.研究動機...1
1-2.研究目的...2
1-3.論文架構...3
二、文獻探討...4
2-1.謠言...4
2-1-1.網路謠言...6
2-1-2.消費型謠言...8
2-2.資料探勘...8
2-2-1.資料探勘之定義...8
2-2-2.資料探勘之方法...9
2-3.文字探勘...10
2-4.口碑行銷...13
2-5.資訊操弄理論...14
2-6.文字探勘相關研究文獻...14
2-6-1.以語法分析辨別造假財務報告之研究...14
2-6-2.以意見探勘方法分析社群媒體訊息...15
2-6-3.以文字探勘技術偵測抄襲之論文...17
2-6-4.以文字探勘分析網路評論文章...17
2-7.謠言及模糊詞語相關研究...18
三、研究方法...20
3-1.研究設計...20
3-2.關鍵詞擷取...20
3-3.研究模型...25
四、研究結果...27
4-1.資料收集...27
4-1-1.人工收集文章之篩選條件...27
4-1-2.以專家意見分類文章...27
4-2.模型結果...28
五、結論...31
5-1.研究限制...32
5-2.未來研究建議...33
參考文獻...34
參考文獻 中文部分:
參考文獻
〔1〕 汪志堅、駱少康,以內容分析法探討網路謠言之研究, Journal of Information, Technology and Society, 2002.
〔2〕 汪志堅、賴明政,消費者對電子佈告欄所流傳產品瑕疵謠言之態度,廣告 學研究,2001,16:31-52。
〔3〕 張瑋礽,消費型網路謠言傳播行為研究:以大學生為例,碩士論文:佛光 大學傳播研究所,2007。
〔4〕 徐宏亮,學術語篇中的作者立場標記語研究,合肥:合肥工業大學出版社, 2007。
〔5〕 陳依婷,中文口語言談中規避詞的使用,碩士論文:台灣大學語言學研究 所,2008。(未出版)
〔6〕 曾元顯,關鍵詞自動擷取技術之探討,中國圖書館學會會訊,106期,1997。
〔7〕 彭玉琴,漢語語氣副詞引導碼探析,碩士論文:國立台灣師範大學華語文
教學研究所,2009。(未出版)
〔8〕 徐晶凝,現代漢語話語情態研究,北京:崑崙出版社,2007。
〔9〕 陳韻竹,現代漢語可能性副詞可能性排序之研究,碩士論文:國立台灣師
範大學華語文教學研究所,2009。
〔10〕 戴豪君,網際網路服務提供者法律責任與相關法制之研究,財團法人資
訊工業策進會科技法律中心,2003。
〔11〕 洪邦豪,消費者購買智慧型手機決策關鍵因素,碩士論文:國立臺灣科
技大學工業管理系,2011。
〔12〕 國家實驗研究院—專題企劃:提昇國家競爭力-科技政策研究與資訊服務
http://www.narl.org.tw/tw/pressroom/topic/topic.php?group_id=21&topic_id
=79
〔13〕 創市際市場研究顧問,〈網路口碑行銷夯 左右八成網友的消費決策〉,
2009.10。http://www.insightxplorer.com/news/news_10_30_09.html
英文部分:
〔14〕 Allport, G. W., & Postman, L. An Analysis of Rumor, Public Opinion Quarterly, (10), 1947: pp. 501-517.
〔15〕 Allport, G. W., & Postman, L., The Psychology of Rumor, New York: Henry Holt, 1947.
〔16〕 Berry, M. J. A. & Linoff, G., Data Mining Techniques: for Marking, Sales, and Customer Support. New York: John Wiley & Sons Inc., 1997.
〔17〕 Bickart, B. a. R. M. S., Internet Forums as Influential Sources of Consumer
Information., Journal of Interactive Marketing, 15 (3), 31–40., 2001.
〔18〕 Blackwell, R. D., Miniard, P. W., & Engel, J. F. Consumer behavior., 10.,
Aufl.Mason., (2006).
〔19〕 Burgin, R., Dillon, M., Improving Disambiguation in FASIT., Journal of
American Society for Information Science., 43(2), 101-114, 1992.
〔20〕 DiFonzo, N., Bordia, P., & Rosnow, R. L., Reining in rumors, Organizational
Dynamics, (23), 1994.
〔21〕 DiFonzo, N., & Bordia, P., How top PR professionals handle hearsay:
Corporate rumors, their effects, and strategies to manage them., Public
Relations Review, 26(2), 173-190., 2000.
〔22〕 U. Fayyad, G. Piatetsky-Shapiro, & P. Smyth, From Data Mining to
Knowledge Discovery in Databases, AI Magazine, Vol. 17, No. 3, pp. 37-54,
1996.
〔23〕 Fagan, J. L., The Effectiveness of a Nonsyntactic Approach to Automatic
Phrase Indexing for Document Retrieval., Journal of American Society for
Information Science, 40(2), 115-132, 1989.
〔24〕 Fisher, D.R., Runoring Theory and Internet-A framework for Analyzing the
Grass Roots, Social Science Computer Review, (16:2), 1998: pp. 158-168.
〔25〕 W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus, Knowledge
Discovery in Databases: An Overview, AI Magazine, Vol. 13, No. 3, pp.
57-70, 1992.
〔26〕 Gabriel Oberreuter, & Juan D. Velásquez, Text mining applied to plagiarismdetection: The use of words for detecting deviations in the writing style, Expert Systems with Applications, 40, 2013.
〔27〕 Grigori Sidorov, et al., Empirical Study of Machine Learning Based Approach for Opinion Mining in Tweets., MICAI’12 Proceedings of the 11th Mexican international conference on Advances in Artificial Intelligence - Volume Part I, Pages 1-14, 2012.
〔28〕 Graham, J., & Havlena, W., Finding the missing link: Advertising’s impact on word of mouth, web searches, and site visits., Journal of Advertising Research, 47(4), 427-435., 2007.
〔29〕 Hall, C. ed., The devil’s in the details: techniques, tool, and application for database mining and knowledge discovery part I, Intelligent Software Strategies, 6(9), 1-16., 1995.
〔30〕 Hoffman, D. L. and Novak, T. P. Marketing in Hypermedia Computer-mediated Environments: Conceptual Foundations, Journal of Marketing, (60:3), 1996: pp. 50-68.
〔31〕 Jones, L. P., Gassie, E. W., & Radhakrishnan, S., INDEX: The Statistical Basis for an Automatic Conceptual Phrase-indexing System., Journal of American Society for Information Science., 41(2), 87-98, 1990.
〔32〕 Kapferer, J. N., Rumors- Uses, Interpretations, and Images, New Brunswick: Transaction Publishers, 1990. 鄭若麟、邊芹譯,謠言,台北:桂冠圖書,民國 81 年。
〔33〕 Koenig, F., Rumor in the Marketplace, Dover: Auburn House, 1985.
〔34〕 Kohonen, T., Self-organizing maps (3rd edition)., New York:
Springer-Verlag., 2001.
〔35〕 Lakoff, George., Hedges: A study of meaning criteria and the logic of fuzzy
concepts., Journal of Philosophical Logic., 2(4), 458-508., 1973.
〔36〕 Litvin, S.W., Goldsmith, R.E., & Pan, B., Electronic word-of-mouth in
hospitality and tourism management., Tourism Management, 29(3), 458–468.,
2008.
〔37〕 Lyons, J., Semantics (Vol. 1 & 2)., Cambridge : Cambridge University Press.,1977.
〔38〕 S.A. McCornack, Information manipulation theory, Communication
Monographs, 59(1), 1992.
〔39〕 Paijmans, H, Comparing the Document Representation of Two IR Systems:
CLARIT and TOPIC., Journal of American Society for Information Science.,
44(7), 383-392, 1993.
〔40〕 Perkins, M. R., Modal expression in English., Norwood, N. J.: Ablex
Publishing Corporation., 1983.
〔41〕 Pendleton, S., C., Rumor Research Revisited and Expanded, Language &
Communication, (18), 1998: pp. 69-86.
〔42〕 Riegner, C., Word of mouth on the web: The impact of Web 2.0 on consumer
purchase decisions., Journal of Advertising Research, 47(4), 436-447., 2007.
〔43〕 Rosnow, R. L., On Rumor, Journal of Communication, (24:3), 1974:
pp.26-38.
〔44〕 Rosnow, R. L. Rumor as Communication: A Contextual Approach, Journal
of Communication, (38), 1988: pp. 1-17.
〔45〕 Sean L. Humpherys, Identification of fraudulent financial statements using
linguistic credibility analysis, Decision Support Systems, 50, 2011.
〔46〕 Sernovitz, A., Word of Mouth Marketing., New York: Kaplan Publishing.,
2009.
〔47〕 Shibutani, T., Improvised News: A Sociological Study of Rumor,
Indianapolis: Bobbs Merrill, 1966.
〔48〕 Sullivan, D. Document Warehousing and Text Mining: Techniques for
Improving Business Operations, Marketing, and Sales., John Wiley & Sons.,
2001.
〔49〕 Vande Kopple, W. J., Some exploratory discourse on metadiscourse., College
Composition and Communication, 36, 82-93., 1985.
〔50〕 Weishu Hu, Zhiguo Gong, & Jingzhi Guo, Mining Product Features from
Online Reviews, IEEE International Conference on E-Business Engineering, 2010.
〔51〕 Zimin Wu and Gwyneth Tseng, ACTS: An Automatic Chinese Text Segmentation System for Full Text Retrieval., Journal of American Society for Information Science., 46(2), 83-96, 1995.
〔52〕 Opinion Research Corporation, Online consumer reviews significantly impact consumer purchasing decisions, 2008.06, http://www.opinionresearch.com/fileSave/Online_Feedback_PR_Final_6202 008 .pdf
〔53〕 Top Ten Reviews - Smartphones (Website), http://cell-phones.toptenreviews.com/smartphones/
指導教授 許秉瑜(Ping-yu Hsu) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明