博碩士論文 994203027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.233.239.102
姓名 簡政誼(Chengy-yi Chien)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 淘寶網女裝賣家和產品分類之混合式預測系統
(A Hybrid Prediction System for the Seller and the Product Category of Women’s Apparel at Taobao)
相關論文
★ 應用結構行動理論探討跨國企業導入供應鏈管理之個案研究-以資訊電子業為例★ 應用調適性結構行動理論探討ERP卅MES系統導入、轉移和整合之個案研究
★ LCD面板製造廠資訊系統商業價值之個案研究★ 應用調適性結構行動理論探討CIM系統的導入 -以TFT-LCD產業為例
★ ERP系統品質Enhancement的實徵研究★ 以資訊處理理論探討出貨管理系統在TFT-LCD產業的導入及影響之個案研究
★ 連接器供應商於中國大陸地區導入出貨管理系統之個案研究★ 以AHP法探討跨國企業評選固網供應商之決策準則
★ 工具機製造業導入協作式接單服務之探討--以沖床製造廠商為例★ 製造業導入先進規劃與排程系統之探討—以筆電領導廠商為例
★ 經銷商管理的再造-台灣知名飲料業的個案研究★ 運用精實六標準差手法改善資料品質─某TFT-LCD業者之個案研究
★ 第三方物流業者之設施規劃與方案評估-以C物流公司為例★ 期望和認知差異對ERP導入專案的影響-以B公司導入SAP為例
★ 使用者主導系統導入時資訊單位的角色-以W公司導入產品資料管理系統為例★ 運用限制理論探討F公司大型資訊服務專案執行之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,電子商務拍賣平台已成眾多賣家選擇開店的網路平台。隨者電子商務規模的擴大,競爭也更為激烈。若能預測顧客的購買行為,包括買什麼商品和跟誰買,賣家可以成功地留住顧客,並以最具成本效益的方式增加營收。過去研究使用羅吉斯迴歸(LR)等分類模型很難預測顧客沒有購買過的商品分類;結合協同過濾和序列樣式探勘(SPM)等技術找出相似顧客可能喜歡的商品,但容易有資料稀疏性的問題。本研究提出一個RFM資料為基礎的混合(Hybrid)預測系統,結合LR方法所建立的商品分類預測模型,和SPM所找出大部分顧客的購買樣式,藉此預測顧客未來可能會購買的賣家和其商品分類。
本研究以目前兩岸三地最大的網路拍賣平台淘寶網及其中最熱銷的女裝服飾商品為對象,使用網頁內容探勘技術蒐集平台上所揭露的2013年1月1日至2013年4月1日之間的買、賣方交易記錄。本研究依序找出RFM-SPM所使用的參數,混合LR和SPM最適的權重值,進而比較RFM-LR,RFM-SPM和Hybrid三個預測系統的準確度,最後是將顧客分群後比較三個系統的準確度。研究結果顯示Hybrid預測系統的所有評價指標在賣家(0.75)和賣家×商品分類(0.6)的預測上均為三個預測系統中最高的,而RFM-SPM的評價指標則是最低的。在分群顧客的購買行為預測上,Hybrid的綜合評價指標(F1)也是最高的,對於低F高M的顧客群的F1值達0.75~0.82,對於低F低M的顧客群的F1值更高達0.9。
摘要(英) In recent years, more and more sellers expand their businesses through E-commerce auction platform. With the ever-growing of E-commerce, it becomes more competitive to do business on Internet. If the customer’s purchase behavior—what to buy and from whom—can be predicted, the seller would be able to retain its customers and increase its revenue in a more cost-effective way. In the literatures we surveyed, classification models like Logistic regression (LR) was hardly used to predict the product category from which a consumer has not yet purchased before. Recommendation system could find out the product preferred by similar customers by combining collaborative filtering and sequential pattern mining (SPM), but it would suffer from the problem of data sparsity. We propose a RFM-based hybrid prediction system by combining the LR model for prediction of product category, and the purchase patterns of most customers using SPM, to establish the probability of purchasing from a particular seller and a particular product category.

We target at the largest cross-strait auction platform and the most popular product category, women’s apparel at “Taobao” platform, and has collected the trading records between Jan. 1, 2013 and April 1, 2013 using web mining technology. Firstly, we identify the parameters used in RFM-SPM, and then determine the most appropriate weight used in the Hybrid system. We then use precision, recall, and F1 measures to compare the three prediction systems, RFM-LR, RFM-SPM, and the Hybrid. It is shown that the Hybrid exhibits the highest performance in all three measures in predicting the seller (0.75) and the seller×product category (0.6) among the three prediction systems, while those of RFM-SPM are the lowest. In predicting the purchase behavior of customer clusters, the Hybrid again shows the best performance in terms of F1 measure, which is 0.75~0.82 for low F/high M cluster, and 0.9 for low F/low M cluster.
關鍵字(中) ★ 顧客行為預測
★ 序列樣式探勘
★ 羅吉斯迴歸
★ 混合預測系統
★ 顧客購買行為
關鍵字(英) ★ RFM model
★ Sequential pattern mining
★ Logistic regression
★ Hybrid prediction system
★ Customer purchase behavior
論文目次 一、 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 4
1-4 論文架構 4
二、 文獻探討 6
2-1 再購行為 6
2-2 交叉購買 8
2-3 序列樣式 10
2-4 推薦系統 14
2-5 小結 19
三、 系統設計 20
3-1 系統架構 20
3-2 建立商品分類預測模型 21
3-3 取得序列樣式 24
3-4 預測賣家和商品分類 26
3-5 範例 27
四、 系統實作與評估 31
4-1 實驗資料分析 31
4-2 評價指標 34
4-3 實驗結果 34
五、 結論 48
5-1 研究結果 48
5-2 管理意涵 49
5-3 未來展望 49
參考文獻 51
中文文獻 51
英文文獻 51
參考文獻 中文文獻
[1] 淘寶指數︰淘寶指數。2013年,取自: http://shu.taobao.com/。
[2] 中國電子商務研究中心︰2013年中國電商市場數據監測報告核心數據。2013年, 取自: http://b2b.toocle.com/detail--6121048.html。
[3] 中國電子商務研究中心︰2013年上半年淘寶集市佔C2C市場的95.1%。2013年取自: http://b2b.toocle.com/detail--6120647.html。
[4] 經濟部財團法人資訊工業策進會︰電子商務雲端創新應用與基礎環境建置計畫 國內 B2C 網路商店經營及調查報告。2013年4月26日,取自: http://ecommercetaiwan.blogspot.tw/2013/12/2013_4026.html。
英文文獻
[5] Felvey, J., "Cross-Selling by Computer", Bank Marketing. p. 25-27, 1982.
[6] Heskett, J., C. Hart, and W. E. Sasser Jr., "Service Breakthroughs". NY: Free Press, 1990.
[7] Venkatesan, R. and V. Kumar, "A customer lifetime value framework for customer selection and resource allocation strategy", Journal of marketing. p. 106-125, 2004.
[8] Kumar, V., M. George, and J. Pancras, "Cross-buying in retailing: drivers and consequences", Journal of Retailing. Vol 84(1), p. 15-27, 2008.
[9] Yim, C.K. and P. Kannan, "Consumer behavioral loyalty", Journal of Business Research. Vol 44(2), p. 75-92, 1999.
[10] Knott, A., A. Hayes, and S.A. Neslin, "Next-product-to-buy models for cross-selling applications", Journal of Interactive Marketing. Vol 16(3), p. 59-75, 2002.
[11] Verhoef, P.C., P.H. Franses, and J.C. Hoekstra, "The impact of satisfaction and payment equity on cross-buying: A dynamic model for a multi-service provider", Journal of Retailing. Vol 77(3), p. 359-378, 2001.
[12] Ngobo, P.V., "Drivers of customers′ cross-buying intentions", European Journal of Marketing. Vol 38(9/10), p. 1129-1157, 2004.
[13] Schafer, J.B., J. Konstan, and J. Riedi. "Recommender systems in e-commerce". in Proceedings of the 1st ACM conference on Electronic commerce. ACM, p. 158-166, 1999.
[14] Choi, K., et al., "A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis", Electronic Commerce Research and Applications. Vol 11(4), p. 309-317, 2012.
[15] Liu, D.-R., C.-H. Lai, and W.-J. Lee, "A hybrid of sequential rules and collaborative filtering for product recommendation", Information Sciences. Vol 179(20), p. 3505-3519, 2009.
[16] Sarwar, B., et al., Analysis of recommendation algorithms for e-commerce, in Proceedings of the 2nd ACM conference on Electronic commerce. 2000, ACM: Minneapolis, Minnesota, USA. p. 158-167.
[17] Chen, Y.-L., et al., "Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data", Electronic Commerce Research and Applications. Vol 8(5), p. 241-251, 2009.
[18] Bolton, R.N., "A dynamic model of the duration of the customer′s relationship with a continuous service provider: the role of satisfaction", Marketing Science. Vol 17(1), p. 45-65, 1998.
[19] Mittal, V. and W.A. Kamakura, "Satisfaction, repurchase intent, and repurchase behavior: investigating the moderating effect of customer characteristics", Journal of marketing research. p. 131-142, 2001.
[20] Reichheld, F.F. and P. Schefter, "E-loyalty", Harvard business review. Vol 78(4), p. 105-113, 2000.
[21] Jones, T.O. and W.E. Sasser, "Why satisfied customers defect", Harvard business review. Vol 73(6), 1995.
[22] Brown, G.H., "Brand loyalty-fact or fiction", Trademark Rep. Vol 43, p. 251, 1953.
[23] Hughes, A.M., "Strategic database marketing". McGraw-Hill, 2006.
[24] Li, S., B. Sun, and R.T. Wilcox, "Cross-selling sequentially ordered products: An application to consumer banking services", Journal of Marketing Research. p. 233-239, 2005.
[25] Liu, T.-C. and L.-W. Wu, "Customer retention and cross-buying in the banking industry: an integration of service attributes, satisfaction and trust", Journal of Financial Services Marketing. Vol 12(2), p. 132-145, 2007.
[26] Jeng, S.-P., "Effects of corporate reputations, relationships and competing suppliers′ marketing programmes on customers′ cross-buying intentions", The Service Industries Journal. Vol 28(1), p. 15-26, 2008.
[27] Srikant, R., "Mining Sequential Patterns-Research Report RJ 9910", IBM Almaden Research Center, San Jose. 1994.
[28] Huang, C.-L. and W.-L. Huang, "Handling sequential pattern decay: Developing a two-stage collaborative recommender system", Electronic Commerce Research and Applications. Vol 8(3), p. 117-129, 2009.
[29] Li, Q. and B.M. Kim. "Clustering approach for hybrid recommender system". in Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on. IEEE, p. 33-38, 2003.
[30] C.Basu, H.H., W.Cohen. "Recommendationas classification:using social and content-based information in recommendation". in National Conference on Artificial Intelligence. p. 714-720, 1998.
指導教授 何靖遠 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明