博碩士論文 994403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.236.13.53
姓名 張嘉玲(Chia-Ling Chang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 預測冷啟動的新片熱門度
(Predicting the popularity of new video for cold start problem.)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題
★ 關聯式資料庫之廣義知識探勘★ 考量屬性值取得延遲的決策樹建構
★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題★ 利用分割式分群演算法找共識群解群體決策問題
★ 以新奇的方法有序共識群應用於群體決策問題★ 利用社群網路中的互動資訊進行社群探勘
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著網路的普及,人們在網路上分享影片並觀看視頻,已成為人們每天都在做的事情,然而,如何在眾多影片中找到熱門的影片,成為影片管理者、廣告商、影片製造商所關心的事。過去研究在預測熱門影片,依賴過去的歷史資料來作預測,當無歷史資料時,將會面臨傳統推薦上的冷啟動問題。本研究以剛上傳的影片作為預測,找出三十六個預測變數建模,並以五個機器學習的分類演算法(類神經、貝式、支持向量機、羅吉斯回歸、決策樹)作為集成學習ENSEMBLE方法,來建立一至十週的預測模型。本研究另外針對各個屬性構面作為挑選,並探討影響影片熱門度的關鍵屬性。本研究結果顯示,本研究的預測模型,均有很好的預測能力,並且可以解決新影片上傳的冷啟動問題。
摘要(英) Predicting video popularity is an important task involved in managing video-sharing sites. Although many previous studies have investigated this problem, a weakness common to these studies is that their predictions rely on video access data from the past. In other words, they cannot predict the popularity of newly uploaded videos. To handle this cold start problem, this study focused on building prediction models that use only the data available at the time when a video is initially uploaded. Through supervised learning methods, this study employed prediction models to predict the popularity of videos. To further improve the overall accuracy of the prediction, we used an ensemble model to integrate these classification results to obtain the most accurate prediction. The empirical evaluation indicated that the models are effective for predicting the popularity of a video and that our model can solve the cold start problem of video popularity prediction.
關鍵字(中) ★ 資料探勘
★ 熱門度預測
★ 冷啟動
★ YouTube
關鍵字(英) ★ data mining
★ popularity prediction
★ cold start
★ YouTube
論文目次 摘要 I
Abstract II
Table of contents III
List of Figures IV
List of Tables VI
1. Introduction 1
2. Background and Related work 4
2.1 YouTube 4
2.2 Predicting the popularity of video 5
3. Problem description 9
3.1 Popularity of a video 9
3.2 Predictive variables 9
3.2.1 Relevance videos perspective (RV) 11
3.2.2 Author perspective (AU) 12
3.2.3 Keyword perspective (KW) 13
3.3 Similarity computation by title(TL), tag(TG), description(DS) 14
3.4 Ensemble Model 19
3.5 Threshold metrics for performance evaluation 21
4. Evaluation 23
4.1 Study1: Using the all variables to predict popularity. 26
4.2 Study2: Using specific features to predict popularity. 29
4.2.1 Using the relevance videos (RV) category. (Variables 1-12) 29
4.2.2 Using the author (AU) category. (Variables 13-24) 33
4.2.3 Using the keyword (KW) category. (Variables 25-36) 36
4.2.4. Using the title (TL) category. 39
4.2.5. Using the tag (TG) category. 42
4.2.6. Using the description (DS) category. 45
4.2.7 Using the view count (VC) category. 48
4.2.8 Using the preference (PR) category. 51
4.2.9 Using the subscriptions (SB) category. 54
4.2.10. Using the comment count (CM) features. 57
4.3 Study3: Variables selection 60
4.4 Study4: Evaluation of the ensembles in TOP3-TOP9. 64
5. Discussion and conclusion 66
References 70
參考文獻 Ahmad, U., Zahid, A., Shoaib, M., & AlAmri, A. (2017). HarVis: An integrated social media content analysis framework for YouTube platform. Information Systems, 69, 25-39.
Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., & Jeong, H. (2007). Analysis of topological characteristics of huge online social networking services. In Proceedings of the 16th international conference on World Wide Web (pp. 835-844): ACM.
Arnaboldi, V., Campana, M. G., Delmastro, F., & Pagani, E. (2017). A personalized recommender system for pervasive social networks. Pervasive and Mobile Computing, 36, 3-24.
Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, 4, 126.
Brodersen, A., Scellato, S., & Wattenhofer, M. (2012). Youtube around the world: geographic popularity of videos. In Proceedings of the 21st international conference on World Wide Web (pp. 241-250): ACM.
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes: analyzing the world′s largest user generated content video system. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 1-14): ACM.
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2009). Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Transactions on Networking (TON), 17, 1357-1370.
Chatzopoulou, G., Sheng, C., & Faloutsos, M. (2010). A first step towards understanding popularity in YouTube. In INFOCOM IEEE Conference on Computer Communications Workshops (pp. 1-6): IEEE.
Cheng, X., Dale, C., & Liu, J. (2008). Statistics and social network of youtube videos. In In International Workshop on Quality of Service (IWQoS′08) (pp. 229-238): IEEE.
Cheng, X., Dale, C., & Liu, J. (2013). Understanding the characteristics of internet short video sharing: A youtube-based measurement study. IEEE Transactions on multimedia, 15, 1184-1194.
Chorley, M. J., Whitaker, R. M., & Allen, S. M. (2015). Personality and location-based social networks. Computers in Human Behavior, 46, 45-56.
Dalvi, P. T., & Vernekar, N. (2016). Anemia detection using ensemble learning techniques and statistical models. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE International Conference on (pp. 1747-1751): IEEE.
Ditterrich, T. (1997). Machine learning research: four current direction. Artificial Intelligence Magzine, 4, 97-136.
Dumais, S. T. (1994). Latent semantic indexing (LSI) and TREC-2. In The Second Text REtrieval Conference (TREC-2) (pp. 105-115). Gaithersburg.
Dzeroski, S., & Zenko, B. (2004). Is Combining Classifiers Better than Selecting the Best One? Machine learning, 54, 255-273.
Digital Video Advertising to Grow at Annual Double-Digit Rates. eMarketer. (2016). http://www.emarketer.com/Article/Digital-Video-Advertising-Grow-Annual-Double-Digit-Rates/1014105 Accessed 25 October 2016.
Erdal, H., & Karahanoğlu, İ. (2016). Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks. Applied Soft Computing, 49, 861-867.
Figueiredo, F., Almeida, J. M., Gonçalves, M. A., & Benevenuto, F. (2014). On the dynamics of social media popularity: A youtube case study. ACM Transactions on Internet Technology (TOIT), 14.
Figueiredo, F., Almeida, J. M., Gonçalves, M. A., & Benevenuto, F. (2016). TrendLearner: Early prediction of popularity trends of user generated content. Information Sciences, 349, 172-187.
Figueiredo, F., Benevenuto, F., & Almeida, J. M. (2011). The tube over time: characterizing popularity growth of youtube videos. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 745-754): ACM.
Gürsun, G., Crovella, M., & Matta, I. (2011). Describing and forecasting video access patterns. In INFOCOM, 2011 Proceedings IEEE (pp. 16-20): IEEE.
Gaikwad, D., & Thool, R. C. (2015). Intrusion detection system using bagging ensemble method of machine learning. In Computing Communication Control and Automation (ICCUBEA), 2015 International Conference on (pp. 291-295): IEEE.
Gallaugher, J., & Ransbotham, S. (2010). Social media and customer dialog management at Starbucks. MIS Quarterly Executive, 9, 197-212.
Gamasaee, R., & Zarandi, M. F. (2017). A new Dirichlet process for mining dynamic patterns in functional data. Information Sciences, 405, 55-80.
Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society (pp. 71-80): ACM.
Han, X., Wang, L., Crespi, N., Park, S., & Cuevas, Á. (2015). Alike people, alike interests? Inferring interest similarity in online social networks. Decision Support Systems, 69, 92-106.
Hou, Y., Xiao, T., Zhang, S., Jiang, X., Li, X., Hu, X., Han, J., Guo, L., Miller, L. S., & Neupert, R. (2016). Predicting movie trailer viewer′s “like/dislike” via learned shot editing patterns. IEEE Transactions on Affective Computing, 7, 29-44.
Kim, E. S., & Han, S. S. (2009). An analytical way to find influencers on social networks and validate their effects in disseminating social games. In Social Network Analysis and Mining, 2009. ASONAM′09. International Conference on Advances in (pp. 41-46): IEEE.
Landauer, T., McNamara, D., Dennis, S., & Kintsch, W. (2007). Handbook of Latent Semantic Analysis. (1st ed.): Mahwah, New Jersey: Lawrence Erlbaum Associates.
Lee, J. G., Moon, S., & Salamatian, K. (2010). An approach to model and predict the popularity of online contents with explanatory factors. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on (Vol. 1, pp. 623-630): IEEE.
Li, C.-T., Shan, M.-K., Jheng, S.-H., & Chou, K.-C. (2016). Exploiting concept drift to predict popularity of social multimedia in microblogs. Information Sciences, 339, 310-331.
Lymperopoulos, I. N. (2016). Predicting the popularity growth of online content: Model and algorithm. Information Sciences, 369, 585-613.
Maimon, O., & Rokach, L. (2005). Data Mining and Knowledge Discovery Handbook: Springer, Heidelberg.
Pan, X., Yan, E., & Hua, W. (2016). Science communication and dissemination in different cultures: An analysis of the audience for TED videos in China and abroad. Journal of the Association for Information Science and Technology, 67, 1473-1486.
Pinto, H., Almeida, J. M., & Gonçalves, M. A. (2013). Using early view patterns to predict the popularity of youtube videos. In Proceedings of the sixth ACM international conference on Web search and data mining (pp. 365-374): ACM.
Rodrigues, T., Benevenuto, F., Almeida, V., Almeida, J., & Gonçalves, M. (2010). Equal but different: a contextual analysis of duplicated videos on YouTube. Journal of the Brazilian Computer Society, 16, 201-214.
Rowe, M. (2011). Forecasting audience increase on youtube. In Workshop on User Profile Data on the Social Semantic Web.
Roy, S. D., Mei, T., Zeng, W., & Li, S. (2013). Towards cross-domain learning for social video popularity prediction. IEEE Transactions on multimedia, 15, 1255-1267.
The Growth of Social Media v 3.0. SEJ. (2016). https://www.searchenginejournal.com/growth-social-media-v-3-0-infographic/155115/ Accessed 25 October 2016.
Serrat, O. (2009). Social network analysis. In (Vol. 28): Knowledge Solutions 28 Asian Development Bank.
Shamma, D. A., Yew, J., Kennedy, L., & Churchill, E. F. (2011). Viral Actions: Predicting Video View Counts Using Synchronous Sharing Behaviors. In International Conference on Weblogs and Social Media. Barcelona, Catalonia, Spai.
News Use Across Social Media Platforms 2016. Shearer, J. G. a. E. (2016). http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/ Accessed 25 October.
Siersdorfer, S., Chelaru, S., Nejdl, W., & San Pedro, J. (2010). How useful are your comments?: analyzing and predicting youtube comments and comment ratings. In Proceedings of the 19th international conference on World wide web (pp. 891-900): ACM.
Simmons, S., & Estes, Z. (2006). Using latent semantic analysis to estimate similarity. In Proceedings of the Cognitive Science Society (pp. 2169-2173).
Introducing New Ways to Create, Share and Discover Live Video on Facebook. Simo, F. (2016). http://newsroom.fb.com/news/2016/04/introducing-new-ways-to-create-share-and-discover-live-video-on-facebook/ Accessed October 25 2016.
Social Media Marketing Stats of 2015 To Help You Strategize In 2016. Socialnomics. (2016). http://socialnomics.net/2016/01/05/13-social-media-marketing-stats-of-2015-to-help-you-strategize-in-2016/ Accessed 2016 October 25.
Sugimoto, C. R., & Thelwall, M. (2013). Scholars on soap boxes: Science communication and dissemination in TED videos. Journal of the American Society for Information Science and Technology, 64, 663-674.
Susarla, A., Oh, J.-H., & Tan, Y. (2016). Influentials, Imitables, or Susceptibles? Virality and Word-of-Mouth Conversations in Online Social Networks. Journal of Management Information Systems, 33, 139-170.
Susarla, A., Tan, Y., & Oh, J. (2013). Influentials, Imitables or Susceptibles? Virality and Word-of-Mouth Conversations in Online Social Networks. Virality and Word-of-Mouth Conversations in Online Social Networks (September 9, 2013).
Szabo, G., & Huberman, B. A. (2010). Predicting the popularity of online content. Communications of the ACM, 53, 80-88.
Thelwall, M., Sud, P., & Vis, F. (2012). Commenting on YouTube videos: From Guatemalan rock to el big bang. Journal of the American Society for Information Science and Technology, 63, 616-629.
Toderici, G., Aradhye, H., Pasca, M., Sbaiz, L., & Yagnik, J. (2010). Finding meaning on youtube: Tag recommendation and category discovery. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 3447-3454): IEEE.
Todorovski, L., & Džeroski, S. (2003). Combining classifiers with meta decision trees. Machine learning, 50, 223-249.
Ulges, A., Borth, D., & Koch, M. (2013). Content analysis meets viewers: linking concept detection with demographics on youtube. International Journal of Multimedia Information Retrieval, 2, 145-157.
Vallet, D., Berkovsky, S., Ardon, S., Mahanti, A., & Kafaar, M. A. (2015). Characterizing and Predicting Viral-and-Popular Video Content. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (pp. 1591-1600): ACM.
Class REPTree. WEKA. (2017). http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html Accessed 10 February 2018.
Welbourne, D. J., & Grant, W. J. (2016). Science communication on YouTube: Factors that affect channel and video popularity. Public Understanding of Science, 25, 706-718.
Welch, M. J., Cho, J., & Chang, W. (2010). Generating advertising keywords from video content. In Proceedings of the 19th ACM international conference on Information and knowledge management (pp. 1421-1424): ACM.
Social impact of YouTube. Wikipedia. (2018). https://en.wikipedia.org/wiki/Social_impact_of_YouTube Accessed 10 February 2018.
Wu, T., Timmers, M., De Vleeschauwer, D., & Van Leekwijck, W. (2010). On the use of reservoir computing in popularity prediction. In Evolving Internet (INTERNET), 2010 Second International Conference on (pp. 19-24): IEEE.
Statistics. YouTube. (2018). https://www.youtube.com/yt/press/statistics.html Accessed 10 February 2018.
Zhou, R., Khemmarat, S., & Gao, L. (2010). The impact of YouTube recommendation system on video views. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 404-410): ACM.
Zhou, R., Khemmarat, S., Gao, L., Wan, J., Zhang, J., Yin, Y., & Yu, J. (2016). Boosting video popularity through keyword suggestion and recommendation systems. Neurocomputing, 205, 529-541.
Zhou, T. (2011). Understanding online community user participation: a social influence perspective. Internet Research, 21, 67-81.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2018-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明