博碩士論文 995201003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.204.56.97
姓名 彭思瑋(Sui-wei Peng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
(The Demonstration of Ultra-High Speed (~300GHz) Near Ballistic Uni-Traveling-Carrier Photodiode and its Applications of the Photonic-MMW Bio-Chip)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於毫米波與次毫米波輻射已被普遍應用且商業化,致使我們越發想了解此波段除了應用在無線通訊、安全監控,甚至在軍事武器外,其所輻射出的長波長能量對生物細胞能否有重要的治療功效,如刺激活化細胞或抑制疼痛神經等等。然而,大部分探討毫米波對生物影響的研究的實驗架構有弊病存在,其一即供應毫米波之機制非常龐大且易造成儀器連結上的訊號損耗,其二為傳統提供毫米波之生物實驗裝置僅能提供單一頻率的毫米波輻射,當探討不同頻率對生物體之不同影響時會造成很大的麻煩。為了解決這些問題,本文利用一項光科技技術:將超高速(~300 GHz)近彈道單載子傳輸光二極體與輻射毫米波之偶極天線耦合在利於觀測螢光反應的生物晶片上,此架構實現了寬頻(75~200 GHz)毫米波輻射且因積體化故達到低損耗之便於觀測螢光反應的生物晶片。
摘要(英) As the application and commercial use of millimeter- and sub-millimeter wavelength radiation become more widespread, there is a growing need to understand both the coupling systems and the impact of this long wavelength energy on biological tissues. However most of the millimeter wave components used for bio-experiment is very bulky with huge loss for interconnection. Moreover, the maximum available bandwidth of these components is usually limited, which may cause troubles in investigating the bio-organisms with un-known interesting MMW bands. In order to solve above problems, ultra-high speed (~300 GHz) near ballistic uni-traveling carrier photodiode based bio-chip with ultra-wide MMW operation bandwidth are designed and demonstrated in this paper. By using photonic technology, the wide- band (75-200 GHz) radiation and low interconnection loss bio-chip demonstration is
realized for MMW nanoporation.
關鍵字(中) ★ 毫米波
★ 近彈道單載子傳輸光二極體
★ 毫米波生物晶片
關鍵字(英) ★ Millimeter Waves
★ NBUTC-Photodiode
★ Bio-chip
論文目次 目錄
摘要 i
Abstract ii
誌謝 vi
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 序論 1
1.1基因治療 1
1.2電脈衝穿孔與奈秒電脈衝穿孔 5
1.3毫米波對於細胞的影響 10
1.4實驗動機與論文架構概述 15
第二章 毫米波生物晶片設計與超高速(~300 GHz)近彈道單載
子傳輸光偵測器原理 16
2.1毫米波生物晶片 16
2.2短偶極天線設計 19
2.3超高速(~300 GHz)近彈道單載子傳輸光二極體(NBUTC-PD)之操作理 29
第三章 超高速(~300 GHz)近彈道單載子光二極體(NBUTC-PD)製程步驟與毫米波生物晶片製作 37
3.1超高速(~300 GHz)近彈道單載子光二極體(NBUTC-PD)製程 31
3.2毫米波生物晶片製作 54
3.3元件與傳輸線基板結合 58
第四章 量測與結果討論 60
4.1 Heterodyne-Beating 量測系統之架設 60
4.2近彈道單載子光二極體(NBUTC-PD)頻寬量測結果 62
4.3毫米波生物晶片頻寬量測結果 69
第五章 結論與未來研究方向 72
參考文獻 74
參考文獻 [1]G. Lawton, “Wireless HD Video Heats Up,” Computer, vol. 41, pp. 18-20, 2008.
[2]U.S. Transportation Security Administration, Imaging Technologies, Millimeter Wave Passenger Imaging Tech. Pilot, 2009. http://www.tsa.gov/approach/tech/imaging_technology.shtm.
[3]S. Levine, “The Active Denial System.: A Revolutionary, Non-lethal Weapon for Today’s Battlefield,” http://handle.dtic.mil/100.2/ADA501865, 1-17, June 2009.
[4]K.-H. Schoenbach, R.-P. Joshi, J.-F. Kolb, N. Chen, M. Stacey, E.-S. Buescher, S.-J. Beebe, and P. Blackmore, “Ultra Short Electrical Pulses Open a New Gateway Into Biological Cells,” Proceedings of the IEEE, vol.92 ,pp. 1122 - 1137, July 2004
[5]S.-J. Beebe, J. White, P. Blackmire, Y. Deng, K. Somers, and K. Schoenvach, “Diverse Effects of Nanosecond Pulsed Electric Fields on Cells and Tissues,” DNA and Cell Biology, vol. 22, pp. 785-796, 2003.
[6]P. T. Vernier, Y. Sun, L. Marcu, C. M. Craft, and M. A. Gundersen, “Nanosecond Pulsed Electric Fields Trigger Intracellular Signals in Human Lymphocytes,” NSTI-Nanotech 2004, vol.1, pp. 7-10, 2004.
[7]S.-I. Alekseev, O.-V. Gordiienko, A.-A. Radzievsky, and M.-C. Ziskin, “Millimeter Wave Effects on Electrical Responses of the Sural Nerve In Vivo,” Bioelectromagnetics, vol.31, pp180-190, Oct., 2010.
[8]eter H. Siegel and Victor Pikov, “THz in Biology and Medicine: Towards Quantifying and Understanding the Interaction of Millimeter- and Submillimeter-Waves with Cells and Cell Processes,” 2010 SPIE Photonics West, pp 7562-17, Jan 2010
[9]Prof. Pan’s lab.
[10]J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, pp. 533-535, April, 2012.
[11]S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[12]Donald A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition
[13]Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[14]N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[15]J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” NPG Asia Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[16]Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Derlef Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb. 2007.
[17]H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809-1810, Oct., 2000.
[18]H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[19]J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, pp. 80-86, Jan., 2010.
[20]J.-W. Shi, F.-M. Kuo, Mark Rodwell, and J. E. Bowers, “Ultra-High Speed (270 GHz) Near-Ballistic Uni-Traveling-Carrier Photodiode with Very-High Saturation Current (17 mA) under a 50 Load,” to be published in IEEE Photonic Society Meeting 2011, Arlington, VA, USA, Oct., MC 2.
[21]N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, Mar., pp.864-866, 2004.
[22]W. Fawcett and G. Hill, “Temperature dependence of the velocity/field characteristics of electron in InP,” Electron. Lett., vol. 11, pp. 80-81, 1975.
[23]T. Ishibashi, “Nonequilibrium Electron Transport HBTs,” IEEE Trans. on Electron Devices, vol. 48, pp. 2595-2604, Nov., 2001.
[24]T. Ishibashi and Y. Yamauchi, “A Possible Near-Ballistic Collection in an AlGaAs/GaAs HBT with a Modified Collector Structure,” IEEE Trans. on Electron Devices, vol. 35, pp. 401-404, Apr. 1988.
[25]Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, “High-power RF photodiodes and their applications” Laser & Photon. Rev. 3, no. 1–2, 123–137 (2009) / DOI 10.1002/lpor.200810024
[26]A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and Broadband Sub-terahertz Wave Generation Using a J-band Photomixer Module with Rectangular-waveguide Output Port,” Tech. Dig. 2008 Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), pp. M4K2 1199, Sep., 2008.
[27]Danish-American radio engineer Harald T. Friis at Bell Labs, 1945.
[28]O. Shimomura, M. Chalfie and R. Y. Tsien "for the discovery and development of the green fluorescent protein, GFP", The Nobel Prize in Chemistry, 2008.
[29]An Introduction to Fluorescence Resonance Energy Transfer (FRET) Technology and its Application in Bioscience, 2006.
http://www.biotek.com/resources/docs/Fluorescence_Resonance_Energy_Transfer_Technology_FRET_App_Note.pdf
[30]Silver, Samuel, “ Microwave Antenna Theory and Design,” pp. 92–94, 1949.
[31]J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown,“0.15–3.72 THz absorption of aqueous salts and saline solutions,”Appl. Phys. Lett., vol. 90, pp. 031908–031908-3, 2007.
[32]E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P.Wallace, andM. Pepper,“Simulation of terahertz pulse propagation in biological systems,”Appl. Phys. Lett., vol. 84, pp. 2190–2192, 2004.
[33]J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy ,” J. Phys. Chem., vol. 100, pp. 10373–10379,1996.
[34]C. Ronne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys., vol. 107, pp. 5319–5331, 1997.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2012-10-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明