博碩士論文 995201014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.223.238.44
姓名 徐至鴻(Chih-Hung Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 閘極掘入式增強型氮化鋁鎵/氮化鎵功率場效電晶體之研製
(Fabrication of recessed enhancement-mode AlGaN/GaN power MOSFETs)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要提出利用閘極掘入的方式搭配MIS結構來製作出增強型(Enhancement-mode)操作之氮化鋁鎵/氮化鎵場效功率電晶體,利用高密度偶和電漿蝕刻系統(Inductively Coupled Plasma Etching System,ICP)通入BCl3/Cl2/Ar/O2 (19/50/5/6 sccm)四種氣體來蝕刻閘極區域,可有效降低蝕刻速率以及表面粗糙度。此外,相較於其他閘極氧化層材料,利用原子沉積系統 (Atomic layer deposited, ALD)成長高介電係數和寬能隙之氧化鋁來當作閘極介電層,可有效降低閘極漏電流及提升轉導率。單顆電晶體元件部分,我們設計閘極長度為2 μm之指叉型閘極和環狀閘極兩種做比較,順偏特性部份環形閘極可以達到190 mA/mm的電流密度以及76.3 mS/mm的轉導率較指叉型閘極的150 mA/mm電流密度和45 mS/mm的轉導率優異,由Id-Vd曲線圖之斜率求得環型閘極之開啟電阻為(7.53 mΩ-cm2)亦較指叉型閘極(的8.21 mΩ-cm2要小),兩種增強型元件之臨限電壓分別為1.5 V及1 V。在元件的逆偏特性部份,環型閘極元件在Vg為0 V下之閘極漏電流比指叉型小了兩個數量級。閘極-源極之氧化層耐壓可以達到12 V,單顆元件之崩潰電壓最高可以達到118 V。
為了要實現功率元件之大電流特性,我們設計了多指叉並聯之場效功率電晶體,其中40根並聯之指叉型閘極元件可以達到0.386 A之大電流及1.8 V常關型操作,40根並聯之環形閘極元件可以達到0.44 A之大電流及1.3 V常關型操作。此外我們從線阻和針阻的量測中發現針阻和線阻就占了全部阻抗的2/3,這表示實際注入之電流比預期小了1/3,導致實際電流不如預期,如果要提升電流大小可以使用金屬打線(Wire bonding)的方式解決。
此外,藉由分析不同缺陷存在於GaN MOS電容在不同偏壓下之能帶彎曲情形,讓我們成功分析出缺陷能階對於臨限電壓之影響,此外我們也分析出當類受體的介面缺陷能態(Acceptor like state)過多時,在閘極介面處會有漏電流路徑存在,因此對於閘極掘入式MOSFET來說,降低介面缺陷能態是很重要的。
摘要(英) Enhancement mode AlGaN/GaN MOSFETs fabricated by gate recessed technique and MIS structure is mentioned in this study. ICP dry etch the gate recessed area with BCl3/Cl2/Ar/O2 (19/50/5/6 sccm) gas can effective reduce the etching rate and surface roughness. Furthermore, Compare with other gate dielectric material the Al2O3 gate dielectric grew by ALD (Atomic Layer Deposited) with high k and wide band gap can reduce the gate leakage and improve transconductance. According to the electrical property of 2μm L¬g single device, we design finger type device compare with circular device. Circular type device can achieve 190 mA/mm current density and 76.3 mS/mm transconductance is better than finger type device with 150 mA/mm current density and 45 mS/mm transconductance. From the slope of Id-Vd curve, we can estimate the on resistance of two devices. The on resistance of circular type device (7.53 mΩ-cm2) is lower than finger type device (8.21 mΩ-cm2). The threshold voltage of two different kinds of device are 1.5V and 1V. According to the I-V characteristic in off state, the gate leakage current of Circular type device is two orders lower than finger type device. The oxide breakdown is about 12V and the maximum breakdown of single device is 118 V.
In order to realize high current property of power device, we design multi-finger device to achieve. Forty finger type device can achieve 0.38 A high current and 1.8V threshold voltage, forty circular type device can achieve 0.44 A high current and 1.3 V threshold voltage. In addition, we find that two-thirds of total resistance is probe resistance and bus line resistance. This indicate that the real injected current is lower than our expectation. We can use wire bonding method to improve the current property of the 40 finger device.
By analyzing the band diagram of GaN MOS capacitance with different bias and trap state, we can find the relationship between interface state and threshold voltage. Furthermore, we also find that more acceptor type interface state will cause leakage current path in gate interface. So, it is important to reduce the interface state in Gate recessed MOSFETs.
關鍵字(中) ★ 增強型
★ 閘極掘入式
關鍵字(英) ★ Recessed gate
★ Ehancement-mode
論文目次 論文摘要 v
Abstract vii
誌謝 ix
目錄 xi
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵材料特性 3
1.2.1 自發極化效應 3
1.2.2 壓電極化效應 5
1.3文獻回顧 7
1.4研究動機及論文架構 14
第二章 臨限電壓計算 16
2.1 閘極掘入式HEMT Vth計算 16
2.2 閘極掘入式MISHEMT Vth計算 19
2.2.1閘極蝕刻不超過AlGaN位障層之MISHEMT Vth 計算 19
2.2.2 閘極蝕刻超過AlGaN位障層之MISHEMT Vth計算 22
2.3本章結論 28
第三章 元件製作流程和電性分析 29
3.1 閘極掘入蝕刻條件 29
3.2 AlGaN/GaN 閘極掘入式MISHEMT製作流程 34
3.3 測試元件量測 43
3.4 閘極掘入式MISHEMT電性分析 48
3.4.1 單根閘極掘入式MISHEMT電性分析 48
3.4.2 40根並聯閘極掘入式MISHEMT電性分析 59
3.5 本章結論 67
第四章 閘極掘入式MISHEMT製程檢視 68
4.1 元件漏電流機制分析 68
4.2 閘極介面缺陷能態分析 72
4.2.1 閘極掘入之MIS-diode 遲滯曲線量測分析 72
4.2.2 利用Conductance方式計算介面缺陷密度 73
4.3 本章結論 77
第五章 結論 78
參考文獻 79
參考文獻 [1] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "High-power AlGaN/GaN HEMTs for Ka-band applications," IEEE Electron Device Letters, vol. 26, pp. 781-783, 2005.
[2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, p. 334, 2000.
[3] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, "AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor," IEEE Electron Device Letters, vol. 21, pp. 63-65, 2000.
[4] X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur, and R. Gaska, "Si3N4/AlGaN/GaN metal insulator semiconductor heterostructure field–effect transistors," Applied Physics Letters, vol. 79, p. 2832, 2001.
[5] P. D. Yet, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, A. S. Halder, and J. C. M. Hwang, "GaN MOS-HEMT using atomic layer deposition Al2O3/ as gate dielectric and surface passivation," pp. 167-172, 2004.
[6] Y. Yue, Y. Hao, Q. Feng, J. Zhang, X. Ma, and J. Ni, "Study of GaN MOS-HEMT using ultrathin Al2O3 dielectric grown by atomic layer deposition," Science in China Series E: Technological Sciences, vol. 52, pp. 2762-2766, 2008.
[7] L. Zhi Hong, N. Geok Ing, S. Arulkumaran, M. Ye, T. Khoon Leng, F. Siew Chuen, V. Sahmuganathan, X. Tao, and L. Chee How, "High Microwave-Noise Performance of AlGaN/GaN MISHEMTs on Silicon With Al2O3 Gate Insulator Grown by ALD," IEEE Electron Device Letters, vol. 31, pp. 96-98, 2010.
[8] S. Yagi, M. Shimizu, M. Inada, H. Okumura, H. Ohashi, Y. Yano, and N. Akutsu, "Off-state drain current and breakdown voltage of AlGaN/GaN MIS-HEMT with multilayered gate insulator," physica status solidi (c), vol. 4, pp. 2682-2685, 2007.
[9] S. Yagi, M. Shimizu, H. Okumura, H. Ohashi, K. Arai, Y. Yano, and N. Akutsu, "1.8 kV AlGaN/GaN HEMTs with High-k/Oxide/SiN MIS Structure," pp. 261-264, 2007.
[10] B. Lu, O. I. Saadat, and T. Palacios, "High-Performance Integrated Dual-Gate AlGaN/GaN Enhancement-Mode Transistor," IEEE Electron Device Letters, vol. 31, pp. 990-992, 2010.
[11] B. Zhiwei, H. Yue, L. Hongxia, L. Linjie, and F. Qian, "Characteristics analysis of gate dielectrics in AlGaN/GaN MIS-HEMT," pp. 419-422, 2009.
[12] D. Zhuang and J. H. Edgar, "Wet etching of GaN, AlN, and SiC: a review," Materials Science and Engineering: R: Reports, vol. 48, pp. 1-46, 2005.
[13] T. Wu, Z.-B. Hao, G. Tang, and Y. Luo, "Dry Etching Characteristics of AlGaN/GaN Heterostructures Using Inductively Coupled H2/Cl2, Ar/Cl2 and BCl¬3/Cl2 Plasmas," Japanese Journal of Applied Physics, vol. 42, pp. L257-L259, 2003.
[14] L. Ji-Myon, C. Ki-Myung, P. Seong-Ju, and J. Hong-Kyu, "Inductively Coupled Cl2/Ar/O2 Plasma Etching of GaN, InGaN, and AlGaN," Journal of the Korean Physical Society, vol. 37, p. 842, 2000.
[15] Y. Han, S. Xue, W. Guo, Y. Luo, Z. Hao, and C. Sun, "Highly Selective Dry Etching of GaN over AlGaN Using Inductively Coupled Cl2/N2/O2 Plasmas," Japanese Journal of Applied Physics, vol. 42, pp. L1139-L1141, 2003.
[16] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur, and H. Park, "Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors," Applied Physics Letters, vol. 68, p. 514, 1996.
[17] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electronics Letters, vol. 41, p. 449, 2005.
[18] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, "A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique," pp. 1-4, 2009.
[19] Dong-Seok Kim, "High performance in Normally-off Al2O3/GaN MOSFET Based on an AlGaN/GaN Heterostructure with a p-GaN buffer layer," Journal of the Korean Physical Society, vol. 58, p. 1500 ~ 1504, 2011.
[20] L. Yuan, H. Chen, and K. J. Chen, "Normally Off AlGaN/GaN Metal&2DEG Tunnel-Junction Field-Effect Transistors," IEEE Electron Device Letters, vol. 32, pp. 303-305, 2011.
[21] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode," IEEE Transactions on Electron Devices, vol. 53, pp. 2207-2215, 2006.
[22] N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Low-Leakage-Current Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact," Japanese Journal of Applied Physics, vol. 45, pp. L319-L321, 2006.
[23] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate Injection Transistor (GIT)& A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007.
[24] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, "Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics," IEEE Electron Device Letters, vol. 31, pp. 189-191, 2010.
[25] C. T. Chang, T. H. Hsu, E. Y. Chang, Y. C. Chen, H. D. Trinh, and K. J. Chen, "Normally-off operation AlGaN/GaN MOS-HEMT with high threshold voltage," Electronics Letters, vol. 46, p. 1280, 2010.
[26] R. Aggarwal, A. Agrawal, M. Gupta, and R. S. Gupta, "Analytical performance evaluation of AlGaN/GaN metal insulator semiconductor heterostructure field effect transistor and its comparison with conventional HFETs for high power microwave applications," Microwave and Optical Technology Letters, vol. 50, pp. 331-338, 2008.
[27] M. Esposto, S. Krishnamoorthy, D. N. Nath, S. Bajaj, T.-H. Hung, and S. Rajan, "Electrical properties of atomic layer deposited aluminum oxide on gallium nitride," Applied Physics Letters, vol. 99, p. 133503, 2011.
[28] N. Nepal, N. Y. Garces, D. J. Meyer, J. K. Hite, M. A. Mastro, and J. C. R. Eddy, "Assessment of GaN Surface Pretreatment for Atomic Layer Deposited High-kDielectrics," Applied Physics Express, vol. 4, p. 055802, 2011.
[29] Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, "Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric," Applied Physics Letters, vol. 93, p. 053504, 2008.
[30] Y. Hori, C. Mizue, and T. Hashizume, "Process Conditions for Improvement of Electrical Properties of Al2O3/n-GaN Structures Prepared by Atomic Layer Deposition," Japanese Journal of Applied Physics, vol. 49, p. 080201, 2010.
[31] D. Gregušová, R. Stoklas, C. Mizue, Y. Hori, J. Novák, T. Hashizume, and P. Kordoš, "Trap states in AlGaN/GaN metal oxide semiconductor structures with Al2O3 prepared by atomic layer deposition," Journal of Applied Physics, vol. 107, p. 106104, 2010.
[32] S. Arulkumaran, T. Egawa, and H. Ishikawa, "Studies on the Influences ofi-GaN,n-GaN,p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors," Japanese Journal of Applied Physics, vol. 44, pp. 2953-2960, 2005.
[33] H. Yang, Y. Son, S. Choi, and H. Hwang, "Improved Conductance Method for Determining Interface Trap Density of Metal Oxide Semiconductor Device with High Series Resistance," Japanese Journal of Applied Physics, vol. 44, pp. L1460-L1462, 2005.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2012-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明