博碩士論文 995201065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.15.34.105
姓名 楊正宇(Cheng-Yu Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氧硒化鋅/砷化鎵太陽能電池
(ZnSeO/GaAs Solar Cells)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中間能帶材料在太陽能電池的應用中是目前相當具有潛力的概念,主要原因在於中間能隙帶能有效延伸光譜的吸收範圍。在本論文中,我們首次以中間能帶材料,氧硒化鋅 (ZnSeO),應用於太陽能電池的結構中,並以理論及實驗檢視氧硒化鋅太陽能電池的特性。
文中首先探討不同氧含量之氧硒化鋅的結構與光學特性,其中大於10^4 cm-1的吸收係數使得氧硒化鋅在太陽能電池上的應用具有相當程度的潛力。本文中亦引用一中間能帶太陽能電池理論計算,同時將氧硒化鋅材料的各項參數導入,其結果顯示具中間能隙的氧硒化鋅太陽能電池光電轉換效率可達25 % 。
為實現該太陽能電池,文中以p型砷化鎵為基板,於上成長氧硒化鋅和n型氧化鋅以形成一p-n二極體。為減少太陽能電池的串聯電阻及電流傳輸上的功耗,文中提出鈦/鋁/鎳/金 (Ti/Al/Ni/Au)歐姆接觸,且在高摻雜鎵摻雜氧化鋅薄膜上可達到相當低的特徵接觸阻值為2.6×10^-7 Ω-cm2。元件特性顯示,相較於硒化鋅吸收層的太陽能電池,氧硒化鋅太陽能電池增加了16 %的短路電流,且開路電壓維持不變,轉換效率可提高約43 %。但由於材料品質的問題及尚在開發階段的磊晶技術,因此本實驗中未能實際觀察到中間能帶的現象,但也為接續的材料開發與應用踏出重要的一步。
摘要(英) To date, materials with intermediate band become potential applications in solar cells because the spectral response could be extended by the intermediate band in the forbidden gap. In this thesis, we first demonstrated the ZnSeO based intermediate band solar cells and its characteristics were particularly investigated.
The structural and optical properties of ZnSeO with varying oxygen content were studied in this work. The high absorption coefficients (>104 cm-1) of ZnSeO made it a promising candidate in solar cell. Theoretical calculation based on self-consistent drift-diffusion method was referred in this work. The results showed the conversion efficiency of ZnSeO based solar cell could reach 25 %.
To realize the solar cell structure, ZnSeO with n-ZnO window layer were grown on p-GaAs substrate in this study. We also propose Ti/Al/Ni/Au ohmic contact to minimize the series resistance and power consume in solar cells, and low specific contact resistivity of 2.6×10-7 Ω-cm2 could be achieved. The ZnSeO based solar cells exhibit a 16 % increase of the short circuit current and same open circuit voltage in comparison to ZnSe based cells. Thus, a 43 % improvement in conversion efficiency could be obtained. However, existence of intermediate band could not be observed in ZnSeO solar cell because of the quality issues. This work does provide the opportunities for ZnSeO applied in photovoltaic devices.
關鍵字(中) ★ 硒化鋅
★ 中間能帶
★ 太陽能電池
★ 氧硒化鋅
關鍵字(英) ★ ZnSe
★ ZnSeO
★ solar cells
★ intermediate band
論文目次 摘要 I
Abstract II
第一章 緒論 1
1.1前言 1
1.2文獻回顧 8
1.2.1量子點太陽能電池 8
1.2.2高不匹配合金太陽能電池 9
1.3研究動機 15
1.4論文架構 17
第二章 氧硒化鋅的製備及分析 18
2.1前言 18
2.2磊晶系統 19
2.3結構特性 20
2.4光學特性 23
2.5電氣特性 28
2.6能帶結構 29
2.7結論 33
第三章 氧硒化鋅太陽能電池之效率模擬 34
3.1前言 34
3.2模擬架構 35
3.2.1光電流密度 37
3.2.2暗電流密度 40
3.3參數設定 42
3.4模擬結果與討論 43
3.5結論 47
第四章 氧硒化鋅太陽能電池 48
4.1前言 48
4.2元件結構 49
4.3製程流程 51
4.4氧化鋅之歐姆接觸 53
4.4.1歐姆電極 53
4.4.2特徵接觸電阻及特性分析 54
4.5元件特性分析 60
4.5.1電流-電壓量測 60
4.5.2頻譜響應(spectral response) 62
4.6結論 66
第五章 結論 67
參考文獻 68
參考文獻 [1] Available: http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/091207_pv_industry_expected_to_return_to_high_growth_in_2010.asp
[2] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, p. 1991, 1998.
[3] M. Wolf, "Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth’’s Surface Operation," Proceedings of the IRE, vol. 48, pp. 1246-1263, 1960.
[4] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells," Journal of Applied Physics, vol. 32, p. 510, 1961.
[5] G. Guttler and H. Queisser, "Impurity photovoltaic effect in silicon," Energy Conversion, vol. 10, pp. 51-55, 1970.
[6] A. Luque and A. Marti, "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels," Physical Review Letters, vol. 78, pp. 5014-5017, 1997.
[7] A. Luque and A. Marti, "Recent Progress in Intermediate Band Solar Cells," pp. 49-52, 2006.
[8] M. A. Green, "Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 137-144, 2001.
[9] A. Luque, A. Marti, E. Antolin, and C. Tablero, "Intermediate bands versus levels in non-radiative recombination," Physica B: Condensed Matter, vol. 382, pp. 320-327, 2006.
[10] K. W. J. Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. S. Roberts, and C. T. Foxon, "Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device," Applied Physics Letters, vol. 59, p. 135, 1991.
[11] A. Marti, L. Cuadra, and A. Luque, "Partial filling of a quantum dot intermediate band for solar cells," IEEE Transactions on Electron Devices, vol. 48, pp. 2394-2399, 2001.
[12] R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells," Applied Physics Letters, vol. 93, p. 083111, 2008.
[13] G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish, and M. A. Green, "The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells," Progress in Photovoltaics: Research and Applications, vol. 10, pp. 345-353, 2002.
[14] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, "Multiband GaNAsP quaternary alloys," Applied Physics Letters, vol. 88, p. 092110, 2006.
[15] E. Canovas, A. Marti, A. Luque, and W. Walukiewicz, "Optimum nitride concentration in multiband III-N–V alloys for high efficiency ideal solar cells," Applied Physics Letters, vol. 93, p. 174109, 2008.
[16] W. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Applied Physics Letters, vol. 95, p. 011103, 2009.
[17] T. Tanaka, K. M. Yu, A. X. Levander, O. D. Dubon, L. A. Reichertz, N. Lopez, M. Nishio, and W. Walukiewicz, "Demonstration of ZnTe1-xOx Intermediate Band Solar Cell," Japanese Journal of Applied Physics, vol. 50, p. 082304, 2011.
[18] A. Luque, A. Martı́, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence," Journal of Applied Physics, vol. 96, p. 903, 2004.
[19] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, "Effect of strain compensation on quantum dot enhanced GaAs solar cells," Applied Physics Letters, vol. 92, p. 123512, 2008.
[20] S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, "AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs," Semiconductors, vol. 43, pp. 514-518, 2009.
[21] C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, "Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells," Applied Physics Letters, vol. 98, p. 163105, 2011.
[22] A. Luque and A. Marti, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv Mater, vol. 22, pp. 160-74, Jan 12 2010.
[23] J. Li and S.-H. Wei, "Alignment of isovalent impurity levels: Oxygen impurity in II-VI semiconductors," Physical Review B, vol. 73, 2006.
[24] K. Uesugi, N. Morooka, and I. Suemune, "Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements," Applied Physics Letters, vol. 74, p. 1254, 1999.
[25] J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah, and K. C. Hsieh, "Luminescence quenching and the formation of the GaP1−xNx alloy in GaP with increasing nitrogen content," Applied Physics Letters, vol. 60, p. 2540, 1992.
[26] W. G. Bi and C. W. Tu, "N incorporation in InP and band gap bowing of InNxP1−x," Journal of Applied Physics, vol. 80, p. 1934, 1996.
[27] J. C. Harmand, G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, and G. Patriarche, "Investigations on GaAsSbN/GaAs quantum wells for 1.3–1.55μm emission," Journal of Crystal Growth, vol. 227-228, pp. 553-557, 2001.
[28] B. N. Murdin, M. Kamal-Saadi, A. Lindsay, E. P. O’Reilly, A. R. Adams, G. J. Nott, J. G. Crowder, C. R. Pidgeon, I. V. Bradley, J. P. R. Wells, T. Burke, A. D. Johnson, and T. Ashley, "Auger recombination in long-wavelength infrared InNxSb1-x alloys," Applied Physics Letters, vol. 78, p. 1568, 2001.
[29] M. Seong, H. Alawadhi, I. Miotkowski, A. Ramdas, and S. Miotkowska, "Role of electronegativity in semiconductors: Isoelectronic S, Se, and O in ZnTe," Physical Review B, vol. 62, pp. 1866-1872, 2000.
[30] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, J. Wu, E. E. Haller, Y. Nabetani, T. Mukawa, Y. Ito, and T. Matsumoto, "Effect of oxygen on the electronic band structure in ZnOxSe1-x alloys," Applied Physics Letters, vol. 83, p. 299, 2003.
[31] A. Polimeni, M. Capizzi, Y. Nabetani, Y. Ito, T. Okuno, T. Kato, T. Matsumoto, and T. Hirai, "Temperature dependence and bowing of the bandgap in ZnSe1-xOx," Applied Physics Letters, vol. 84, p. 3304, 2004.
[32] W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. Kurtz, "Band Anticrossing in GaInNAs Alloys," Physical Review Letters, vol. 82, pp. 1221-1224, 1999.
[33] N. Lopez, L. Reichertz, K. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Physical Review Letters, vol. 106, 2011.
[34] A. Luque, A. Marti, and C. Stanley, "Understanding intermediate-band solar cells," Nature Photonics, vol. 6, pp. 146-152, 2012.
[35] Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, "Epitaxial growth and large band-gap bowing of ZnSeO alloy," Applied Physics Letters, vol. 83, p. 1148, 2003.
[36] Y. Nabetani, T. Mukawa, T. Okuno, Y. Ito, T. Kato, and T. Matsumoto, "Structure and optical properties of ZnSeO alloys with O composition up to 6.4%," Materials Science in Semiconductor Processing, vol. 6, pp. 343-346, 2003.
[37] K. Iwata, A. Yamada, P. Fons, K. Matsubara, and S. Niki, "Natural ordering of ZnO1−xSex grown by radical source MBE," Journal of Crystal Growth, vol. 251, pp. 633-637, 2003.
[38] A. Belabbes, A. Zaoui, and M. Ferhat, "Lattice mismatch consequences for the intrinsic characteristics in the dilute (Zn, Se)O alloys," Journal of Physics: Condensed Matter, vol. 19, p. 456212, 2007.
[39] Y. K. Kim, J. K. Kim, W. G. Lee, S. Y. Kim, B. I. Kim, J. H. Ha, N. Starzhinskiy, V. Ryzhikov, and B. Grinyov, "Properties of semiconductor scintillator ZnSe:O," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 580, pp. 258-261, 2007.
[40] S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, A. J. Ptak, R. R. King, and N. H. Karam, "Effect of growth rate and gallium source on GaAsN," Applied Physics Letters, vol. 82, p. 2634, 2003.
[41] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, "Time-resolved photoluminescence studies of InGaN epilayers," Applied Physics Letters, vol. 69, p. 2837, 1996.
[42] A. S. Lin, W. Wang, and J. D. Phillips, "Model for intermediate band solar cells incorporating carrier transport and recombination," Journal of Applied Physics, vol. 105, p. 064512, 2009.
[43] R. S. Crandall, "Modeling of thin film solar cells: Uniform field approximation," Journal of Applied Physics, vol. 54, p. 7176, 1983.
[44] S. S. Hegedus, "Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection," Progress in Photovoltaics: Research and Applications, vol. 5, pp. 151-168, 1997.
[45] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single-junction and tandem solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 2952-2959, 2006.
[46] M. A. Green, Solar Cells: Prentice Hall, 1982.
[47] J. Nelson, The Physics of Solar Cells: Imperial College Press, 2003.
[48] V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, "Quantum dot solar cells," Journal of Applied Physics, vol. 89, p. 2268, 2001.
[49] G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, "Thermodynamic limits of quantum photovoltaic cell efficiency," Applied Physics Letters, vol. 91, p. 223507, 2007.
[50] A. Luque and A. Marti, "A metallic intermediate band high efficiency solar cell," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 73-86, 2001.
[51] S. Adachi, Handbook on Physical Properties of Semiconductors vol. 3, 2004.
[52] C. Hu, Z. Ding, Z. Qin, Z. Chen, K. Xu, Y. Wang, Z. Yang, S. Yao, B. Shen, and G. Zhang, "Investigation on the different barrier effect of Ni and Pt in the Ti/Al/Pt/Au and Ti/Al/Ni/Au contacts to n-type GaN," Journal of Crystal Growth, vol. 298, pp. 804-807, 2007.
[53] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes," Applied Physics Letters, vol. 83, p. 2943, 2003.
[54] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, pp. 3842-3844, 2001.
[55] S. Young Kim, H. Won Jang, J. Kyu Kim, C. Min Jeon, W. Il Park, G.-C. Yi, and J.-L. Lee, "Low-resistance Ti/Al ohmic contact on undoped ZnO," Journal of Electronic Materials, vol. 31, pp. 868-871, 2002.
[56] K. Ip, K. H. Baik, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, B. Luo, F. Ren, and J. M. Zavada, "Annealing temperature dependence of contact resistance and stablity for Ti/Al/Pt/Au ohmic contacts to bulk n-ZnO," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2378, 2003.
[57] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO," Applied Physics Letters, vol. 84, p. 544, 2004.
[58] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Specific contact resistance of Ti/Al/Pt/Au ohmic contacts to phosphorus-doped ZnO thin films," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 171, 2004.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2012-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明