博碩士論文 995201066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.189.192.235
姓名 邱俊閔(Chun-Min Chiou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 平面式鍺量子點單電子電晶體之研製與特性分析
(Fabrication and Electrical Characterizations of Germanium QD Single Electron Transistor in Planar Structure)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單電子電晶體既具有高電荷靈敏度以及低功率消耗之潛能優點,亦是元件尺寸不停微縮的趨勢下所因應而生之量子元件。本論文目的是藉由改進本研究室前一代平面式單電子電晶體之缺點,並且重新設計,進而改善元件電特性與提升良率。
在此篇論文中,我們將針對平面式的鍺量子點單電子電晶體的研製以及電流特性的分析作深入的探討研究。首先在製程上,我們先利用一奈米孔洞的製作來達成量子點的精確定位,之後利用選擇性熱氧化的方式在孔洞中心形成單顆的鍺量子點並且有對稱的穿隧介電層。接著使用電子束微影並搭配電極圖案的設計去定義元件之各端電極,簡化了以往製作單電子電晶體時因為源/汲電極與閘電極是分別去定義與形成,會有比較複雜之製程步驟。最後我們利用分析訊號以及蝕刻的方式來去大量降低在兩道微影對準製程時之不確定性,使平均對準偏移量控制得以在15 nm以內。在溫度為120 K至80 K的電性量測下,元件展現出相當清晰並且有可意義的庫倫震盪現象。最後我們分別從結構上以及量測結果上估算單電子電晶體特性參數,並進行比較與分析。
摘要(英) Single-electron transistors (SET) offer great potential for high charge sensitivity and low-power consumption. Besides, it’s a rational quantum device which conforms to the historical trend of the device scaling. This thesis has redesigned and reformed the SET device originated from our group before for the purpose to promote the yield rate and advance the electrical performance.
In this thesis, we demonstrated the fabrication and electrical characterizations of germanium quantum dot (Ge QD) in planar structure. We are able to position and number Ge QDs by means of fabricating a nano-cavity. After thermal oxidizing the SiGe polygonal in the nano-cavity, it produced a single Ge QD in the center with symmetrical tunneling junction. Instead of quite complicated SET process of the past that made Gate and S/D to be defined respectively, all electrodes are formed together for this SET device by particularity patterning with electronic beam lithography. Additionally, through suitable signal processing to alleviate the uncertainty of lithography alignment, we successfully reduce miss alignment to less than 15 nm in average.
The fabricated Ge QD SET exhibits reliable and clear Coulomb oscillation behaviors under gate and drain modulation at T = 80 K-120 K. In addition, we make some preliminary estimates from device structure, and compare them with measurement data.
關鍵字(中) ★ 單電子電晶體
★ 鍺量子點
★ 電子束微影
關鍵字(英)
論文目次 中文摘要 i
英文摘要 ii
致謝 iv
目錄 vi
圖目錄 vii
表目錄 xiii
第一章、簡介與研究動機
1-1 論文的整體架構 1
1-2 單電子電晶體的誕生 1
1-3 近年來各團對於單電子電晶體之研究 3
1-4 研究動機 10

第二章、平面式單電子電晶體元件設計與關鍵製程開發
2-1 前言 26
2-2 元件設計與關鍵製程開發 27
I. 奈米孔洞的製作 27
II. 各端電極微影製程 28
III. 電子束微影對準實驗 31

第三章、元件製作流程
3-1 前言 43
I. Buffer layer製作 43
II. 定義主動區 43
III. 定義奈米孔洞 44
IV. 沉積Si3N4 spacer形成穿隧位障 44
V. 回蝕多晶矽鍺合金並氧化形成鍺量子點 45
VI. 奈米孔洞結構檢視 45
VII. 電子束微影定義各端電極 45
VIII. 離子佈值與回火形成半導體電極 46
IX. 後段製程 46
第四章、元件電流特性分析與討論
4-1 單電子電晶體操作原理 53
4-2 量測儀器與量測參數預期說明 54
4-3 元件ID-VD電流特性 56
4-3.1 常溫(300 K)普查情況 56
4-3.2 ID-VDS 降溫量測 ( 120, 100, 80 K ) 57
4-4 元件ID-VG電流特性 60
4-5 元件量測參數分析討論 62
4-6 結論 65
第五章、總結與未來展望 74
參考文獻 75
參考文獻 [1] 陳啟東,“單電子電晶體簡介”,奈米物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[2] K. K Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions, ” IBM J. Res. Develop., vol. 32, pp. 144–158, 1988.
[3] T. A. Fulton and G.J. Dolan, “Observation of single electron charging effects in small tunnel junction,” Phys. Rev. Lett., vol. 59, pp. 109–112, 1987.
[4] M. Saitoh and T. Hiramoto, “Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic resistance,” J. Appl. Phys., vol. 91, pp. 6725–6728, 2002.
[5] T. Hiramoto, M. Saitoh, G. Tsutsui “Emerging nanoscale silicon devices taking advantage of nanostructure physics,” IBM Journal of Research and Development, vol. 50, no. 4/5, pp. 411–418, Jul. 2006.
[6] M. Saitoh, H. Harata, and T. Hiramoto, “Room temperature demonstration of integrated silicon single electron transistor circuit for current switching and analog pattern matching,” in IEDM Tech. Dig., 2004, pp. 187–190.
[7] M. Saitoh and T. Hiramoto “Room temperature demonstration of highly-functional single-hole transistor logic based on quantum mechanical effect” IEE Electronics Letters, vol. 40, no. 13, pp. 837–838, Jul. 2004.
[8] S. Lee, K. Miyaji, M. Kobayashi, and T. Hiramoto, “Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., vol. 92, no. 7, pp. 073502-1–073502-3, Feb. 2008.
[9] S. J. Angus, A. J. Ferguson, A. S. Dzurak, and R. G. Clark, “Gate defined quantum dots in intrinsic silicon” Nano Lett. vol. 7, no. 7 pp. 2051–2055, 2007.
[10] W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Mottonen, K. W. Chan, A. Morello, and A. S. Dzurak, “Observation of the single-electron regime in a highly tunable silicon quantum dot,” Appl. Phys. Lett., vol. 95, no. 24, pp. 242 102-1–242 102-4, Dec. 2009.
[11] K. W. Chan, M. Mottonen, A. Kemppinen, N. S. Kai, K. Y. Tan, W. H. Lim, and A. S. Dzurak, “Single electron shuttle based on a silicon quantum dot,” Appl. Phys. Lett., vol. 98, no. 21, pp. 212 103-1–212 103-3, Jul. 2011.
[12] S. J. Shin, C. S. Jung, B. J. Park, T. K. Yoon, J. J. Lee, S. J. Kim, J. B. Choi, Y. Takahashi, and D. G. Hasko, “Si-based ultrasmall mult-switching single-electron transistor operating at room-temperature,” Appl. Phys. Lett., vol. 97, no. 10, pp. 103 101-1–103 101-3, Sep. 2010.
[13] S. J. Shin, J. J. Lee, H. J. Kang, J. B. Choi, S.-R. Eric Yang, Y. Takahashi, and D. G. Hasko, “Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island,” Nano Lett., vol. 11, no. 4, pp. 1591–1597, Apr. 2011.
[14] G. L. Chen, D. M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, vol. 18, no. 47, pp. 475402-1–475402-4, Nov. 2007.
[15] I. H. Chen, K. H. Chen, W. T. Lai, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Elect. Dev, vol. 59, no. 12, pp. 3224–3230, Dec. 2012.
[16] Mohamed Amine Bounouar, Arnaud Beaumont, Francis Calmon, Dominique Drouin, “On the use of nanoelectronic logic cells based on metallic single electron transistors” International Conference on Ultimate Integration of Silicon ULIS 2012, Grenoble, France, Mar. 5-7, 2012.
[17] G. Droulers, S. Ecoffey, M. Pioro-Ladrière, D. Drouin, “Conception and fabrication of quantum cellular automata based on a single electron transistor process ” NanoQuebec Conference, Montreal, Canada, Mar. 20-21, 2012, pp. 1078–1080.
[18] W. Xuan, A. Beaumont, M. Guilmain, M. A Bounouar, N. Baboux, J. Etzkorn, D. Drouin, F. Calmon “Static and dynamic modeling of single-electron memory for circuit simulation,” IEEE Trans. Elect. Dev., vol. 59, no. 1, pp. 212–220, 2012.
[19] D. Griveau, S. Ecoffey, R. M. Parekh, M. A. Bounouar, F. Calmon, J. Beauvais, D. Drouin, “Single electron CMOS-Like one bit full adder ” International Conference on Ultimate Integration of Silicon ULIS 2012, Grenoble, France, Mar. 5-7, 2012.
[20] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。
[21] Kuan-Hung Chen, Chung-Yen Chien and Pei-Wen Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, pp. 055302-1-055302-9, Feb. 2010.
[22] P. W. Li et al., “Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, no. 9, pp. 1532–1534, Aug. 2004.
[23] 陳光亮,“具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性硏究”,碩士論文,國立中央大學,民國95年。
[24] Donald A. Neamen, Semiconductor physics and devices: Basic Principles, 3rd ed., New Delhi: McGraw-Hill, 2002, pp. 171–183.
[25] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: John Wiley and Sons, 1981, pp. 40–41.
[26] J. Weis, E. J. Haug, K. V. Klitzing, and K. Ploog, “Transport spectroscopy of a confined electron system under a gate tip”, Phys. Rev. B, vol. 46, no. 19, pp. 12837–12840, 1992.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2013-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明