博碩士論文 995201072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.233.239.20
姓名 余政達(Cheng-Ta Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻化物異質接面場效電晶體之研製及其微波切換器應用
(Antimonide-Based Compound Semiconductor (ABCS) HFETs Fabrication and Microwave Switch Applications)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製
★ 金氧半電容元件的暫態模擬之數值量測★ 雙載子電晶體在一維和二維空間上模擬的比較
★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用
★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用★ 探討分離式簡化電路模型在半導體元件模擬上的效益
★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用★ 二維半導體元件模擬的電流和電場分析
★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析★ 元件分割法及其在二維互補式金氧半導體元件之模擬
★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用銻化物材料擁有優異的高速載子傳輸特性,發展低功率及高速的異質接面場效電晶體,並且利用高電子遷移率電晶體來設計串並聯電晶體方式的切換器電路,其切換器電路操作頻率從直流到30 GHz。元件電性部分有直流特性與高頻特性,在閘極長度為2 μm的砷化銦/銻化鋁(InAs/AlSb)之N型通道元件特性及銻化銦鎵/銻化鋁(InGaSb/AlSb)之P型通道元件特性,分別於汲極偏壓為VDS = 0.4 V和VDS = -3 V下,其汲極飽和電流分別為IDSS= 230及14.7 mA/mm,轉導增益分別為gm = 400和43.4 mS/mm,電流增益截止頻率分別為fT = 11.3和1.4 GHz。
本論文中也利用Yang-Long直流及冷態(cold mode)等量測方法分別萃取高速電子電洞遷移率電晶體之內外部參數,並建立元件小訊號模型及之大訊號模型。而切換器電路方面主要為使用N型通道元件來設計,利用串並聯電晶體方式分別設計單刀單擲(Single-Pole Single-Throw,SPST)及單刀雙擲(Single-Pole Double-Throw,SPDT)兩種電路架構。而本研究還另外製作了雙閘極電晶體在這兩種電路架構中,與單閘極電晶體做分析與比較。在直流到10 GHz間雙閘極切換器量測的插入損耗小於4 dB且隔離度大於25 dB。而電路導通在頻率100 MHz時,輸入一分貝增益壓縮點(P1dB)及輸入三階截斷點(IIP3)分別為14和23.4 dBm。
摘要(英) Antimonide-based compound semiconductors (ABCSs) have a few advantages of low power and high speed because of their superior carrier transport properties. Several switches are proposed using the ABCS technology, and the operation frequency is from dc to 30 GHz. InAs/AlSb N-type and InGaSb/AlSb P-type heterojunction field effect transistors (HFETs) with a gate length of 0.2 μm show good DC and RF performance. With a drain voltages of 0.4 and -3 V, the N-type and P-type HFETs have the maximum drain current densities of 230 and 14.7 mA/mm, the transconductance of 400 and 43.4 mS/mm and the unity current gain frequencies (fT) of 11.3 and 1.4 GHz, respectively.
In this thesis, we used Yang-Long and the cold mode methods, extracting the N- and P-type extrinsic and intrinsic parameters to establish small-signal and large-signal models. The switches are designed using series-shunt n-type HEMTs for single-pole single-throw (SPST) and single-pole double-throw (SPDT) configurations. In addition, the dual-gate devices were fabricated for the SPST and SPDT switches, the results can be compared with the single-gate devices. From DC to 10 GHz, the measured insertion losses and isolations of the proposed switch are less than 4 dB and greater than 25 dB, respectively. When the switch is on state at 100 MHz, the measured input P1dB and IIP3 are 14 and 23.4 dBm.
關鍵字(中) ★ 砷化銦
★ 銻化物
★ 切換器
★ 小訊號模型
關鍵字(英) ★ antimonide-Based Compound
★ InAs
★ small-signal model
★ switch
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 導論 1
1.1 研究動機 1
1.2 相關研究發展現況 3
1.3 論文架構 6
第二章 磊晶結構設計與元件製作 7
2.1 前言 7
2.2 磊晶結構設計 7
2.2.1 砷化銦/銻化鋁(InAs/AlSb)磊晶結構 7
2.2.2 銻化銦鎵/銻化鋁(InGaSb/AlSb)磊晶結構 11
2.3 元件製作流程 14
2.3.1 歐姆接觸製程 14
2.3.2 元件隔離製程 15
2.3.3 蕭特基接觸製程 16
2.3.4 拉線製程 17
2.4 結論 19
第三章 砷化銦/銻化鋁與銻化銦鎵/銻化鋁之元件特性 20
3.1 前言 20
3.2 元件性能 20
3.2.1 N型通道砷化銦/銻化鋁之元件 20
3.2.2 P型通道銻化銦鎵/銻化鋁之元件 27
3.3 結論 31
第四章 高遷移率電晶體之大、小訊號模型建立 33
4.1 前言 33
4.2 小訊號模型建立流程 33
4.3 小訊號模型建立 34
4.3.1 外部寄生元件參數萃取流程與結果 34
4.3.2 內部寄生元件參數萃取流程與結果 40
4.4 大訊號模型介紹 48
4.5 大訊號模型萃取方法與結果 48
4.5.1 電容、電阻非線性方程式 48
4.6 結論 54
第五章切換器電路設計 55
5.1 前言 55
5.2 切換器設計與製作 55
5.3 量測結果 59
5.3.1 單閘極與雙閘極元件之特性 59
5.3.2 切換器電路之特性 64
5.4 結論 73
第六章 結論與未來發展 75
參考文獻 77
參考文獻 [1] J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer., “AlSb/InAs HEMTs for low-voltage, high-speed applications,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1869-1875, 1998.
[2] C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, no. 2, pp. 255-258, 1992.
[3] C. A. Chang, R. Ludeke, L. L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, 1977.
[4] M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, ”Molecular Beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, no. 12, pp. 2091-2096, 1978.
[5] R. Ludeke, “Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, no. 3, pp. 304-314, 1978.
[6] R. Tsai, M. Barsky, J. B. Boss, J. Lee, N. A. Papanicolaou, R.Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for Low-Power, High-Speed Electronics,” Proc. IEEE GaAs Dig., 2003.
[7] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid State Electron., vol.49, no. 12, pp. 1875-1895, 2005.
[8] S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, no. 12, 1989.
[9] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Lett., vol. 89, no. 11, pp. 5815-5875, 2001.
[10] F. L. Schuermeyer, P. Cook, E. Martinez, and J. Tantillo, “Band alignment in heterostructures”, Appl. Phys. Lett., vol. 55, no. 18, pp. 1877-1878, 1989..
[11] B. R. Bennett, M. G. Ancona, J. B. Boos and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., vol. 91, no. 4, pp. 042104, 2007.
[12] J. B. Boos, B.R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electron. Lett., vol. 43, no. 15, pp. 834-835, 2007.
[13] B. Ma, J. Bergman, J. B.Hacker, G. Sullivan, A. Sailer and B. Brar, “DC-2 GHz Low Loss Cryogenic InAs/AlSb HEMT Switch,” 2009 IEEE MTT-S Int. Microwave Symp. Dig., pp. 449-452, 2009.
[14] B. R. Bennett, S. A. Khan, J. B. Boos , N. A. Papanicolaou, V. V. Kuznetsov, “AlGaSb Buffer Layers for Sb-Based Transistors,” Journal of Electronic Materials, vol. 39, no. 10, pp. 2196-2202, 2010.
[15] N. Chaturvedi, U. Zeimer, J. Würfl and G. Tränkle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, no. 2, pp. 175-179, 2006.
[16] B. Brar, “Impact ionization in InAs-AlSb heterostructure field-effect-transistors,” Ph.D. dissertation, UC Santa Barbara, 1995.
[17] 陳沛煜, “銻化物高電子遷移率場效晶體之閘極微縮製程發展與元件特性研究,” 碩士論文, 國立中央大學, 2011.
[18] L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” Electron Device Letters, IEEE, vol.7, no.2, pp. 75-77, 1986
[19] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trains. Microwave Theory and Techniques, vol.36, no.7, pp.1151-1159, 1988.
[20] M. Isler, K. Schünemann, “Impact-Ionization Effects on the High-Frequency Behavior of HFETs,” IEEE Trains. Microwave Theory and Techniques, vol. 52, no. 3, pp.858-863, 2004.
[21] T. Tanimoto, I. Ohbu, S. Tanaka, A. Kawai, M. Kudo, A. Terano, T. Nakamura, “Single-voltage-supply highly efficient E/D dual-gate pseudomorphic double-hetero HEMT’s with platinum buried gates, ” IEEE Trans. Electron Devices, vol. 45, pp. 1176-1182 , 1998
[22] Z Gu, D. Johnson, S. Belletete, and D. Fryklund,“ Low insertion loss and high linearity PHEMT SPDT and SP3T switch ICs for WLAN 802.11 a/b/g applications,” IEEE radio frequency intergrated circuits symposium, Digest.pp. 505-508, 2001.
指導教授 張鴻埜、蔡曜聰
(Hong-Yeh Chang、Yao-Tsung Tsai)
審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明