博碩士論文 995201093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.207.133.13
姓名 林恩弘(En-Hung Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
(Extraction of MEG steady-state auditory evoked field in tinnitus patient using empirical mode decomposition (EMD))
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由多通道的腦磁波儀記錄穩態聽性誘發之腦磁波,來探討耳鳴患者在接受規律聲音刺激時大腦神經活化的能量變化與正常人之差異。本研究在台北榮民總醫院收取共10位受測者(5名耳鳴患者、單耳耳鳴),年齡介於22到50歲(平均年齡33歲),皆為右撇子。MEG實驗在具有磁場遮蔽效應(magnetically shielded) 與噪音屏蔽的檢查室中進行,取樣頻率為1000Hz。實驗分別對左耳及右耳做刺激,受試者先做純音刺激實驗,確保受測者聽力在可接受範圍之內,再做穩態聲音刺激實驗,刺激聲音材料使用帶有37Hz 調變之1000Hz聲頻。我們將MEG收取的資料使用經驗模態分解法拆成數個IMF,並把每個IMF作頻譜轉換,挑選含有誘發資訊(37Hz)的IMF做觀察。我們發現正常人的穩態聽覺誘發有以下幾種情形:1.右半腦能量總是大於左半腦、2.對側耳刺激時能量較強。耳鳴患者與正常人對比則沒有上述兩條規律,我們猜測與耳鳴造成大腦皮質可塑性(plasticity)的不正常放電有關,另外從大腦皮質的誘發之區域比正常人廣泛,則可推測因為耳鳴使得某些大腦神經元壞死,進而引發周圍大腦的過度補償之可能。
摘要(英) This dissertation adopted multi-channel MEG to study the steady-state auditory evoked field (SSAEF) responses in tinnitus patients. In this study, 10 right-handed subjects (5 single-side tinnitus patients), aged from 22 to 50 years (mean age at 33 years) were recruited. MEG experiments were performed in a sound-proof magnetic shielding room. MEG data were recorded at 1000 Hz sampling rate. Auditory stimuli were given to subject’s left ear and right ear separately. Preceding the SSAEF study, pure tone stimulations were given to each subject to ensure the sound loudness was within subject’s acceptable range. The stimulation material of SSAEF was 1000Hz sound modulated by 37 Hz modulation frequency. MEG data were segmented into epochs and decomposed by empirical mode decomposition (EMD) into several intrinsic mode functions (IMF). Task-related IMFs with 37Hz information were identified to reconstruct noise-suppressed SSAEFs. In this study, we found the SSAEFs have the following characteristics in normal subjects: 1. right brain energy is always greater than the left hemisphere, and 2. Greater responses induced by contralateral auditory stimulation. Neverthelss, no similar finding was concluded in tinnitus patients. We guess it is caused by cerebral cortex plasticity, it makes the brain not normal discharge. And We also found disinhibition of SSAEF response in affected side (tinntus ear), it might caused by the some reason.
關鍵字(中) ★ 經驗模態分解法
★ 耳鳴
★ 腦磁波
★ 穩態聽覺誘發磁場
關鍵字(英) ★ tinnitus
★ MEG
★ empirical mode decomposition (EMD)
★ steady-state auditory evoked field
論文目次 電子檔授權書 I
摘要 II
Abstract III
致謝 IV
圖目錄 VI
表目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 聽覺生理介紹 3
1.4 耳鳴理論與文獻回顧 7
第二章 腦磁波量測與聽性穩態磁場 12
2.1 腦波量測 12
2.2 腦磁波儀 14
2.3 純音刺激 15
2.4 穩態聲音刺激 16
2.5 聽性穩態磁場 21
2.6 經驗模態分解法 22
第三章 實驗方法 26
3.1 受測者 26
3.2 實驗設計 26
3.3 訊號處理 27
3.4 訊號處理結果 30
第四章 結果與討論 36
第五章 未來展望 46
參考文獻 48
參考文獻 1. 謝昌成,黃俊豪,劉鎮嘉(2007);耳鳴.基層醫學,第二十二卷第九期:317–323.
2. C.P. Lanting, E. de Kleine, P. van Dijk, Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear, 2009; 255(I-2): I-I3.
3. H. Bartels, M.J. Staal, F.W. Albers, Tinnitus and neural plasticity of the brain. Otol Neurotol, 2007; 28(2):178–184.
4. P.J. Jastreboff, Neurosci. 1990, Aug: 221–254.
5. D.M. Baguley, Mechanisms of tinnitus. Br Med Bull 2002; 63:195-212.
6. 陳玉祥(2002),噪音傷害之耳蝸功能保護─生長激素對噪音傷害後毛細胞的影響-動物實驗;行政院國家科學委員會輔助專題研究計畫成果報告.
7. S. Dehmel, Y.L. Cui, S.E. Shore, Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. 2008, Dec; 17(2) :S193–S209.
8. W. Mu¨hlnickel, T. Elbert, E. Taub, H. Flor. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA. 1998; 95:10340–10343.
9. A.R Samuel, R.J. Savi, R.F. Burkard, M.L. Coad, D.S. Wack, P. J. Galabtowicz, A.H. Lockwood. Brain imaging of the effect of lidocaine on tinnitus. Hearing Research. 2002. 171: p.43–50.
10. W. Schlee, N. Weisz, O. Bertrand, T. Hartmann, T. Elbert. Using Auditory Steady State Responses to Outline the Functional Connectivity in the Tinnitus Brain. Res. 2008,PLoS ONE 3(11): e3720.
11. R. Galambos, S. Makeig, P.J.Talmachoff. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 1981; 78: 2643–7.
12. G. Rance, R.C. Dowell , F.W Rickards. Steady state evoked potential and behavioural hearing thresholds in a group of children with absent click evoked auditory brainstem response. Ear Hear, 1998, 19:48 61
13. O.G Lins, T.W Picton, B.L Boucher. Frequency specific audiometry using steady state responses. Ear Hear, 1996,17:8196.
14. C. Wienbruch, I. Paul, N. Weisz, T. Elbert, L.E. Roberts. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage. 2006 Oct 15;33(1):180-94. Epub 2006 Aug 9.
15. E. Diesch, M. Struve, A. Rupp, S. Ritter, M. Hülse., Enhancement of steady-state auditory evoked magnetic fields in tinnitus. European Journal of Neuroscience, 2004, 19: 1093–1104.
16. R. Bernhard, A Novel Type of Auditory Responses: Temporal Dynamics of 40-Hz Steady-State Responses Induced by Changes in Sound Localization. J Neurophysiol , 2008, 100:1265-1277.
17. W.S. De, C.S. Yu, C.B. Hung, Survey on the Development of Empirical Mode Decomposition and Issue Analysis.
18. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H. H. Liu, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- stationary Time Series Analysis. Proc. R. Soc. Lond. A, vol. 454, 1998, pp. 903- 995.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明