博碩士論文 995201112 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.230.76.196
姓名 林喬盛(Qiao-Sheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用功率結合變壓器之達靈頓功率放大器與X頻段pHEMT製程功率放大器研製
(Implementation on Darlington Power Amplifier Using Power Combining Transformer and X-band pHEMT Process Power amplifier)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用TSMC 0.18-μm CMOS製程以及WIN 0.15 pHEMT製程設計功率放大器(Power Amplifier, PA),在設計上分成兩個部份,第一部分為使用功率結合技術,設計K頻帶至Ka頻帶達靈頓功率放大器。設計方面,以達靈頓架構將單顆電晶體之單增益頻率(frequency of unity current gain, fT)成倍頻延伸,並且透過fT的改變,最大可用增益(Maximum available gain, MAG)以及最大振盪頻率(Maximum fequency of oscillation, fmax)均會有所不同。接著對達靈頓架構做模擬以及小訊號分析,以找到主要關鍵點,功率結合技術方面,利用上下堆疊式變壓器將兩路差動達靈頓功率放大器做功率結合以提高輸出功率,實作方面,量測特性如下:增益量測在28.8 GHz有最大值,為6.1 dB,輸入回返損耗為25 dB,輸出回返損耗最高為20 dB,在28 GHz的 1-dB增益壓縮點輸出功率為12 dBm,飽和輸出功率為14 dBm,最高效率為1.5%。
第二部分為全積體化pHEMT功率放大器,應用頻率為X頻帶。設計方面,可分為兩級,分別為功率級以及驅動級,驅動級目的在於提高增益,功率級則在提供輸出功率。實作方面,電路在10 GHz時的量測特性如下:增益量測為24.3 dB,輸入迴返損耗為15.8 dB,輸出回返損耗為8.7 dB,1-dB增益壓縮點輸出功率為17.6 dBm,飽和輸出功率為20.8 dBm,最高效率為35.7%。
摘要(英) This thesis presents power amplifier implemented in TSMC 0.18μm CMOS technology and WIN 0.15μm pHEMT technology. The implemented circuits include two PA categories. The first category is the design of K-band to Ka-band darlington power amplifier using power combining technology. In this design, we use darlington structure to entend the fT and the MAG as well as fmax change with fT. And then we analyze the darlington structure and simulate this structure to find the dominant factor. In power combining technology, we use the stacked coupling transformer to combine the output power of differential darlington power amplifier. And the measured results of this circuit are summarized as below: maximum power gain of 6.1 dB at 28.8 GHz, input return loss of 25 dB, output return loss of 20 dB. At 28 GHz the output power of 1-dB compression point is 12 dBm, saturated output power is 14 dBm and maximum PAE is 1.5%
The second category is the fully integrated pHEMT power amplifier in X-band. In this design, we divide this circuit into two parts. One part is drive stage, and it can enhance the power gain.The other part is power stage, and it can provide the output power. And the measured results of this circuit are summarized as below, power gain of 24.3 dB, input return loss of 15.8 dB, output return loss of 8.7 dB ,the output power of 1-dB compression point is 17.6 dBm, saturate power is 20.8 dBm and maximum PAE is 35.7%.
關鍵字(中) ★ 變壓器
★ 功率放大器
★ 達靈頓
關鍵字(英) ★ transformer
★ Darlington
★ Power amplifier
論文目次 中文摘要 IV
英文摘要 V
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3章節簡介 2
第二章 功率放大器 3
2-1 功率放大器簡介 3
2-2 功率放大器重要參數簡介 5
2-3 功率放大器之分類 9
第三章 應用功率結合變壓器之達靈頓功率放大器設計 14
3-1 文獻回顧 14
3-2 功率結合變壓器原理簡介 15
3-3 利用功率結合變壓器之達靈頓功率放大器研製 18
3-3.1 功率結合變壓器設計 18
3-3.2 達靈頓功率放大器設計 21
3-3.3 模擬與量測結果 35
3-4 比較與討論 42
第四章 X頻段功率放大器設計 45
4-1 文獻回顧 45
4-2 應用於X頻段pHEMT功率放大器研製 46
4-2.1 應用於X頻段pHEMT功率放大器 46
4-2.2 模擬與量測結果 48
4-3 比較與討論 54
第五章 結論與未來研究方向 55
5-1 結論 55
5-2未來期許與研究方向 56
參考文獻 57
參考文獻 [1] H. R. Khan, J. Fritzin, Q. Wahab, A. Avandpour, “A 900 MHz 26.8 dBm Differential Class-E CMOS Power Amplifier,” pp.276-279, German Microwave Conference, 2010.
[2] Y. Yoshihara, R. Fujimoto, N. Ono, T. Mitomo, H. Hoshino, and M. Hamada, “A 60-GHz CMOS power amplifier with Marchand balunbased parallel power combiner,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2008, pp. 121–124.
[3] N. Kalantari and J. F. Buckwalter, “A 19.4 dBm, Q-band class-E power amplifier in a 0.12 μm SiGe BiCMOS process,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 5, pp. 283–285, 2010.
[4] C. Y. Law and A.-V. Pham, “A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Dig., Feb. 2009, pp. 426–427.
[5] K. Krishnamurthy, R. Vetury, S. Keller, U. Mishra, M. J. W. Rodwell, and S. I. Long, “Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers,” IEEE J. Solid-State Circuits, vol. 35, pp.1285–1292, Sept. 2000.
[6] K. W. Kobayashi, “Linearized darlington cascode amplifier employing GaAs PHEMT and GaN HEMT techonologies,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2116–2122, Oct. 2007.
[7] K. W. Kobayashi, Y. Chen, I. Smorchkova, R. Tsai, M. Wojtowicz, and A. Oki, “1-Watt conventional and cascoded GaN-SiC Darlington MMIC amplifiers to 18 GHz,” in Proc. IEEE RFIC Symp., Honolulu, HI, Jun. 2007, pp. 585–588.
[8] Shou-Hsien Weng, Hong-Yeh Chang and Chau-Ching Chiong, “Design of a 0.5–30 GHz Darlington amplifier for microwave broadband applications,” Microwave Symposium Digest (MTT), 2010 IEEE MTTS International, p.137.
[9] P.-C. Huang, K.-Y. Lin, and H. Wang, “A 4–17 GHz Darlington cascode broadband medium power amplifier in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp.43–45, Jan. 2010.
[10] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol.37, no. 3, pp. 371–383, Mar. 2002.
[11] K. H. An et al., “Power-combining transformer techniques for fullyintegrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol.43, no. 5, pp. 1064–1075, May 2008.
[12] A. Vasylyev, P. Weger, and W .Simburger, “Ultra-broad band 20.5-31GHz monolithically-integrated CMOS power amplifier,” Electronics Letters, vol. 41, no. 23, pp. 1281-1282, Nov 2005.
[13] J.-S. Paek, B. Park, and S. Hong, “CMOS LNA with Darlington-pair for UWB systems,” Electron. Lett., vol. 42, no. 16, Aug. 3, 2006.
[14] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol. 53, no.2, pp. 472–477, Feb. 2005.
[15] B. Ku, S. Baek, and S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1599–1609, Jun. 2011.
[16] A. Bessemoulin, R. Quay, S. Ramberger, H. Massler, and M. Schlechtweg, “A 4-W X-band compact coplanar high-power amplifier MMIC with 18-dB gain and 25% PAE,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1433–1437, Sep. 2003.
[17] C. K. Chu, H. K. Huang, H. Z. Liu, C. H. Lin, C. H. Chang, C. L. Wu, C. S. Chang, and Y. H. Wang, “A 9.1–10.7 GHz 10 W, 40 dB gain four-stage PHEMT MMIC power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 151–153, Feb. 2007.
[18] C. K. Chu, H. K. Huang, H. Z. Liu, R. J. Chiu, C. H. Lin, C. C. Wang, Y. H. Wang, C. C. Hsu, W. Wu, C. L. Wu, and C. S. Chang, “Fully matched 8 W X-band PHEMT MMIC high power amplifier,” in IEEE GaAs IC Symp. Dig., 2004, pp. 137–140.
[19] C. K. Chu, H. K. Huang, H. Z. Liu, R. J. Chiu, C. H. Lin, C. C. Wang, M. P. Houng, Y. H. Wang, C. C. Hsu, W. Wu, C. L. Wu, and C. S. Chang, “A fully matched high linearity 2 W PHEMT MMIC power amplifier for 3.5 GHz applications,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 667–669, Oct. 2005.
[20] R. Wang, M. Cole, L. D. Hou, P. Chu, C. D. Chang, T. A. Midford, and T. Cisco, “A 55% efficiency 5 W PHEMT X-band MMIC high power amplifier,” in IEEE GaAs IC Symp. Dig., Orlando, FL, 1996, pp. 111–114.
[21] W. Bosch, J. G. E. Mayock, M. F. O’Keefe, and J. McMonagle, “Low cost X-band power amplifier MMIC fabricated on a 0.25 μm GaAs pHEMT process,” in Proc. IEEE Int. Radar Conf., 2005, pp. 22–26.
[22] A. P. de Hek, P. A. H. Hunneman, M. Demmler, and A. Hulsmann, “A compact broadband high efficient X-band 9-watt PHEMT MMIC highpower amplifier for phased array radar applications,” in IEEE GaAs IC Symp. Dig., Oct. 1999, pp. 276–280.
[23] Chu, C.-K., Huang, H.-K., Liu, H.-Z., Lin, C.-H., Chang, C.-H., Wu, C.-L., Chang, C.-S., and Wang, Y.-H.: ‘An X-band high-power and high-PAE PHEMT MMIC power amplifier for pulse and CW operation’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (10), pp. 707–709
[24] 陳瑋強,“Ku/K頻段壓控振盪器及注入鎖定除頻器暨毫米波fT -倍頻電路壓控振盪器與寬頻混頻器之研製”, 中央大學,碩士論文, 2009。
[25] 陳建中,“使用功率結合變壓器功率放大器與反E類開關式功率放大器研製”, 中央大學,碩士論文, 2009。
[26] 潘孟偉,“全積體整合矽製程E類功率放大器與Ka頻段pHEMT製程功率放大器研製”, 中央大學,碩士論文, 2010。
[27] 吳開文,“使用變壓器結合功率之功率放大器與反F類功率放大器研製”, 中央大學,碩士論文, 2010。
[28] 黃亭堯,“應用傳輸線變壓器與功率結合技術於全積體化功率放大器之研究”,中央大學,碩士論文, 2011。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明