博碩士論文 995201122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.117.102.227
姓名 林盈瑞(Ying-Jui Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 設計一網印電極藉由電阻抗感測偵察細胞行為
(Screen-printed electrode design for cell behaviors detection by electric cell-substrate impedance sensing)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究設計一拋棄式銀電極作為量測工具,以細胞與基底間電性檢測法(ECIS)為分析方法,針對老鼠纖維母細胞L929進行即時監控,以及小鼠巨噬細胞RAW264.7發炎行為來驗證電極設計原理。指叉電極由網印方式製造, LCR電表確認其基本電氣特性。在細胞阻抗實驗量測中,自製指叉電極能準確監控細胞L929在電極表面之行為,當細胞貼附在一對電極表面狀態十二小時下中頻歸一阻抗變化(NIC)最高可達800%。實驗過程中搭配掃描式電子顯微鏡技術(SEM)驗證細胞型態與阻抗之關係。為了驗證電極設計原理,本研究利用小鼠巨噬細胞進行發炎反應,當電極尺寸貼近細胞尺寸狀態時可有效提升感測器整體之阻抗靈敏度。上述實驗證明出當細胞貼附在電極表面時,電極對數為一對,而間距以及寬度為50μm之電極規格具有最高阻抗靈敏度,可減少電極表面之電場穿越長度使電場強度侷限在電極表面。除此之外為了確認生物相容性此網印電極利用MTT分析方法來驗證此電極適合細胞貼附。
摘要(英) In this study, aimed to monitor L929 cell behaviors in real time, a disposable silver electrode was designed and incorporated in an electric cell-substrate impedance sensing analysis. Inflammation of cell RAW264.7 was developed to verify the electrode design theory. The electric characteristic of the electrode was measured with an LCR meter. This home-made interdigitated electrode was fabricated by screen printing technique. In the cell impedance measurement experiment, the normalized impedance change (NIC) of cell attaching on the one-paired electrode could be 800%, revealing the potentiality of our home-made electrodes to monitor cell behaviors on the electrode. The relationship between the measured impedance and the cell morphology on the electrode would be explained by scanning electron microscope (SEM) technique. Inflammation of cell RAW264.7 was developed to verify the electrode design theory. When the cell size was commensurate with the electrode size, the sensitivity of our sensor would be increased. Our experiment results showed that the one-paired electrode, with 50 μm spacing and width, had the highest sensitivity, supposedly because of more concentrated electric field distribution surfacing the substrate and electrode. Besides, MTT assays verified the compatibility of our home-made electrodes.
關鍵字(中) ★ 指叉電極
★ 細胞與基底間電性檢測法
★ 掃描式電子顯微鏡
★ 靈敏度
關鍵字(英) ★ interdigitated electrode
★ electric cell-substrate impedance sensing
★ scanning electron microscope
★ sensitivity
論文目次 中文摘要……………………….………………………………………………..……..І
Abstract……………………………………………………………………….….……II
致謝…………………………………………………………………………….….…III
目錄……………………………………………………………………….………….IV
圖目錄.......……………………………………………………………………...….VIII
表目錄……………………………………………………………..…………..…XXIII
第一章 諸論
1-1 前言…………………………………………………………………………….....1
1-1-1 生物感測器定義………………………………………………………1
1-1-2 生物感測器組成與結構………………………………………………1
1-1-3 電化學生物感測器量測方法…………………………………………4
1-1-4 網印技術應用在生物感測器…………………………………………8
1-2 細胞生理特性介紹……………………..…………………………….…………10
1-2-1 細胞結構……………………………………………………………..10
1-2-2 分子穿越細胞膜的移動……………………………………………..13
1-2-3 細胞生長週期………………………………..………………………14
1-3 文獻回顧………………………………………………..……………………….15
1-3-1 阻抗量測應用在細胞反應……………………………………………...15
1-3-1-1 細胞貼附…………………………………………………………16
1-3-1-2 細胞成長…………………………………………………………26
1-3-1-3 細胞凋亡…………………………………………………………30
1-3-1-4 細胞分化…………………………………………………………37
1-3-2 細胞阻抗量測之電極設計……………………………………………...43
1-3-2-1 指叉電極幾何參數之設計…….……………………….………..45
1-3-2-1-1 指叉電極寬度跟間距影響…………………….…………47
1-3-2-1-2 指叉電極長度與對數影響………………….……………58
1-3-2-1-3 指叉電極厚度影響………….……………………………62
第二章 研究動機與目標………………………….……………………………….66
2-1 研究動機. …………..…….…………………….……………………………….66
2-2 研究目標……………………………….……….……………………………….66
第三章 實驗方法…………….…………………....……………………………….67
3-1 電極製備與電性分析…………………………………………………………..67
3-1-1 電極製備之儀器以及材料………………………………….…………..67
3-1-2 電極電容值分析……….………………………………………….…….74
3-1-3 不同溶液阻抗量測…………………………………………………..….76
3-1-4 電極在細胞培養溶液下之阻抗量測………………….……..…………77
3-2 細胞培養……………………………………………………………..………….78
3-2-1 細胞培養藥劑、材料及使用設備…………………………..………….78
3-2-1-1 細胞培養藥劑以及材料……………………………..…………..78
3-2-1-2 細胞培養實驗設備…………………………………..…………..79
3-2-2細胞培養方法及步驟……………………………………………………83
3-2-2-1 細胞解凍以及培養………………………………………………84
3-2-2-2 細胞分盤以及繼代培養…………………………………………84
3-2-2-3 細胞計數…………………………………………………………85
3-2-2-4 細胞冷凍…………………………………………………………86
3-3 鼠纖維母細胞(L929)細胞阻抗量測………………………………….………..86
3-3-1 指叉電極之細胞阻抗48hr量測……………………………..………….86
3-3-2 電極不同對數之阻抗量測………………………………….…………..90
3-3-3 電極不同對數之靈敏度量測………………………………….………..91
3-3-4 電極與細胞等效模型量測………………………………….…………..91
3-3-5 細胞行為與掃描式電子顯微鏡應用…………………………….……..93
3-3-6 電極與細胞活性實驗……………………………………………...……96
3-4 小鼠巨噬細胞(RAW264.7)阻抗量測與電極設計原理驗證……………...…100
3-4-1 指叉電極微小之原理驗證與實驗…………………………...……..…100
第四章 實驗結果…………………………………………………………………108
4-1 電極阻抗量測與製程評估結果………………………………………………108 4-1-1電極製程結果分析…………………………………..…………………108
4-1-2 電極電性分析…………………………………….……..………..……120
4-1-3 不同溶液阻抗分析……………………………………….……………121
4-1-4 電極在細胞培養溶液下阻抗分析………………….…………………144
4-2 鼠纖維母細胞(L929)阻抗量測結果…………………….……………………148
4-2-1 指叉電極之細胞阻抗48hr量測………………………………………154
4-2-2 電極不同對數之阻抗分析…………………………………………….157
4-2-3 電極不同對數之靈敏度分析………………………………………….164
4-2-4電極與細胞等效模型綜合分析………………………………………..168
4-2-5 細胞行為與電極阻抗關係…………………………………………….186
4-2-6電極與細胞活性分析…………………………..………………….……192
4-3 小鼠巨噬細胞(RAW264.7)阻抗量測結果…………….………………….…..196
4-3-1 控制組阻抗紀錄與模擬結果………………..……………………..196
4-3-2 實驗組阻抗紀錄與模擬結果…………..…………………………..205
4-3-3 靈敏度比較與原理驗證…………….……….……………………..215
第五章 結論………………………………………………….………….………..221
未來展望……………………………………………………………………………222
參考文獻…………………………………………………………………………....223
參考文獻 [1] Tapas Kuila, Saswata Bose, Partha Khanra, Ananta Kumar Mishr, Nam Hoon Kim, Joong Hee Lee, Recent advances in graphene-based biosensors, Biosensors and Bioelectronics,vol.26, pp.4637-4648, 2011
[2]謝振傑,光纖生物感測器文,物理雙月刊,二十八卷四期,2006年8月
[3]吳浩青,李永舫,電化學動力學,科技圖書出版社,2001
[4]F. Ghamouss, E. Luais, C. Thobie-Gauiter, P.-Y. Tessier, M. Boujtia ,Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces, Eletrochemical Acta ,vol.54,pp.3026-3032,2009
[5] Hang Wei, Jian-Jun Sun, Yu Xie, Cong-Gui Lin, Yan-Min Wang, Wen-Hui Yin, Guo-Nan Chen, Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure, Analytica Chimica Acta , vol.588, pp.297–303, 2007
[6] Miloslav Pravda, Catriona O’Meara, George G. Guilbault ,Polishing of screen-printed electrodes improves IgG adsorption,Talanta , vol.54,pp. 887–892,2001
[7] S.C. Wang, K.S. Chang, C.J. Yuan ,Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochimica Acta , vol.54,pp. 4937–4943,2009
[8] Cesar Fern and ez-Sanchez, Calum J. McNeil, Keith Rawson, Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development, Trends in Analytical Chemistry, vol. 24, no.1,pp.37-48, 2005
[9] David A. Harrington, P. van den Driessche , Mechanism and equivalent circuits in electrochemical impedance spectroscopy,Electrochimica Acta,vol.56 ,pp.8005–8013,2011
[10] W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee,J. J. Pireaux, G. Maes ,Nanoscaled interdigitated titanium electrodes for impedimetric biosensing, Sensors and Actuators B,vol. 68,pp.360–370,2000
[11] Gehad G. Mohamed, Tamer Awad Ali, M.F. El-Shahat, A.M. Al-Sabagh,M.A.Migahed, Elmorsy Khaled, Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes,Analytica Chimica Acta ,vol.673, pp. 79–87,2010
[12] J.P. Hart, A.K. Abass, D. Cowell, Development of disposable amperometric sulfur dioxide biosensors based on screen printed electrodes, Biosensors & Bioelectronics ,vol.17, pp. 389–394,2002
[13] K.C. Honeychurch, J.P. Hart, P.R.J. Pritchard, S.J. Hawkins, N.M. Ratcliffe, Development of an electrochemical assay for 2,6-dinitrotoluene, based on a screen-printed carbon electrode, and its potential application in bioanalysis, occupational and public health, Biosensors and Bioelectronics ,vol.19,pp.305-312
,2003
[14] W.Y. Su, S.M. Wang, S.H. Cheng, Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers, Journal of Electroanalytical Chemistry ,vol.651 pp.166–172,2011
[15] Belen Bello Rodriguez, John A. Bolbot, Ibtisam E. Tothill, Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples, Biosensors and Bioelectronics, vol.19,pp.1157–1167,2004
[16] Ivanildo Luiz de Mattos, Lo Gorton , Tautgirdas Ruzgas, Sensor and biosensor based on prussian blue modified gold and platinum screen printed electrodes, Biosensors and Bioelectronics,vol.18,pp.193-200,2003
[17] Guido Carpini, Fausto Lucarelli, Giovanna Marrazza, Marco Mascin, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids,Biosensors and Bioelectronics, vol.20, pp.167–175,2004
[18] Lam Dai Tran, Binh Hai Nguyen, Nguyen Van Hieu, Hoang Vinh Tran,Huy Le Nguyen, Phuc Xuan Nguyen ,Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes, Materials Science and Engineering C ,vol.31,pp. 477–485,2011
[19] 潘震澤、楊志剛、高毓儒、黃娟娟、袁宗凡、謝坤叡,人體生理學,第三版,台灣台北,合記圖書出版社,2005
[20] 國立交通大學生物資訊研究所,台聯大生命科學課程改進計畫教學資料。
[21] Ji-Wei Wang, Min-Haw Wang, Ling-Sheng Jang ,Effects of electrode geometry and cell location on single-cell impedance Measurement,Biosensors and Bioelectronics,vol.25, pp.1271–1276,2010
[22] L. Renea Arias, Carla A. Perry, Liju Yang ,Real-time electrical impedance detection of cellular activities of oral cells,Biosensors and Bioelectronics ,vol.25 pp.2225–2231,2010
[23]Cornelia Hildebrandt, Impidjati, and Hagen Thielecke,Non-invasive characterization of the osteogenic differentiation of hMSCs in 3D by impedance spectroscopy, IFMBE Proceedings ,vol. 25/10, pp 81-84,2010
[25] Eric Moore, Orla Rawley, TerriWood, Paul Galvin ,Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors,Sensors and Actuators B ,vol.139 ,pp. 187–193,2009
[26] X. Huang and D.W. Greve D. D.Nguyen and M.M. Domach ,Impedance based biosensor array for monitoring mammalian cell behavior, Proceeding of IEEE Sensor, vol.1, pp. 304-309,2003
[27] K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel,P. Leiderer, U. Weiland,and M. Bastmeyer,Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,Biophysical Journal,vol.76,pp.509–516, January 1999
[28] R. Ehret W. Baumann M. Brischwein A. Schwinde B. Wolf ,On-line control of cellular adhesion with impedance measurement using interdigitated electrode structure, Med. Biol. Eng. Comput., vol. 36,pp, 365-370,1998
[29] Bin-Wha Chang, Che-Hsiung Chen, Shin-Jyh Ding ,Impedimetric monitoring of cell attachment on interdigitated microelectrodes, Sensors and Actuators B,vol. 105 pp.159–163,2005
[30] Bin-Wha Chang, Che-Hsiung Chen, Shin-Jyh Ding ,Impedimetric monitoring of cell attachment on interdigitated microelectrodes, Sensors and Actuators B,vol.105 pp. 159–163,2005
[31] Duc D. Nguyen, Michael M. Domach, Xiaoqiu Huang , David W. Greve ,Impedance array studies of mammalian cell growth ,Sensors Proceedings of IEEE,vol.1,pp.304-309,2003
[32] 張憲彰,游順生,電阻抗分析系統應用於細胞凋亡量化評估,國立成功大學醫學工程碩士論文,pp.5-7,2009
[33] Martin Brischwein, Sigrun Herrmann,Winfried Vonau,Frank Berthold,Helmut Grothe, Elena Roza Motrescua and Bernhard Wolfa ,Electric cell-substrate impedance sensing with screen printed electrode structures, Lab Chip, vol.6,pp. 819–822,2006
[34] Laura Ceriotti, Jessica Ponti, Pascal Colpo, Enrico Sabbioni, Francois Rossi, Assement of cytotoxicity by impedance spectroscopy,Biosensors and Bioelectronics, vol.22,pp. 3057–3063,2007
[35] Hongying Yin, ,Frank Lei Wang, Angelo Lei,Jing Cheng and Yuxiang Zhou ,Bioelectrical impedance assay to monitor changes in aspirin-treated human colon cancer HT-29 cell shape during apoptosis, Analytical Letters ,vol.40,pp85-94,2007
[36] L. Renea Arias, Carla A. Perry, Liju Yang,Real-time electrical impedance detection of cellular activities of oral cells,Biosensors and Bioelectronics ,vol.25 pp.2225–2231,2010
[37] Sungbo Cho , ErwinGorjup,HagenThielecke ,Chip-based time-continuous monitoring of toxic effects on stem cell differentiation,Ann Anat ,vol.191 , pp.145-152,2009
[38] Lei Wang, He Wang, Lei Wang, Keith Mitchelson, Zhongyao Yu, Jing Cheng
,Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors, Biosensors and Bioelectronics ,vol.24,pp.14–21,2008
[39] Peter Van Gerwen, Wim Laureyn, Wim Laureys, Guido Huyberechts, Maaike Op De Beeck , Kris Baert , Jan Suls , Willy Sansen , P. Jacobs ,Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B ,vol.49,pp.73–80,1998
[40] Madhukar Varshney, Yanbin Li ,Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells, Biosensors and Bioelectronics , vol.24 ,pp. 2951–2960,2009
[41] M. S. Webster, I. V. Timoshkin, S. J. MacGregor, M. Mattey ,Computer aided modelling of an interdigitated microelectrode array impedance , Biosensor for the Detection of Bacteria ,IEEE Transactions on Dielectrics and Electrical Insulation , vol.16,pp.1356-1363.
[42] Hao Zhou , Robert D. Tilton , Lee R. White ,The role of electrode impedance and electrode geometry in the design of microelectrode systems , Journal of Colloid and Interface Science,vol. 297 ,pp.819–831,2006
[43] Kanwar Vikas Singh, Allison M. Whited ,3D nanogap interdigitated electrode array biosensors, Anal Bioanal Chem , vol.397,pp.1493–1502,2010
[44] Zhiwei Zou, Junhai Kai, Michael J. Rust, Jungyoup Han, Chong H. Ahn,Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement,Sensors and Actuators A ,vol.136 , pp.518–526,2007
[45] Stephen M. Radke, Evangelyn C. Alocilja ,Design and fabrication of a microimpedance biosensor for bacterial detection,IEEE SENSORS JOURNAL, vol.4, pp.434-440,2004
[46] Frank Alexander Jr., Dorielle T. Price, Shekhar Bhansali ,Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells, International Conference on Electrical Bioimpedance Journal of Physics: Conference Series ,vol.224,pp.1-4, 2010
[47] Junhong Min, Antje J. Baeumner ,Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensors transducers, Electroanalysis,vol.16, No. 9,pp.724-729, 2004
[48] Xiaoqiu Huang, Duc Nguyen, David W. Greve, and Michael M. Domach,Simulation of Microelectrode Impedance Changes Due to Cell Growth, IEEE SENSORS JOURNAL, vol. 4, No. 5, 2004
[49] Prerna C. Patel, Katherine H. Fisher, Eric C. C. Yang, Charlotte M. Deane, and Rene E. Harrison, Proteomic Analysis of Microtubule-associated Proteins during Macrophage Activation, Molecular & Cellular Proteomics, vol.8, pp.2500-2514, 2009
[50] Katerina Akassoglou, Ryan A. Adams, Jan Bauer,Peter Mercado, Vivian Tseveleki, Hans Lassmann, Lesley Probert, and Sidney Strickland, Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis, Proceedings of the National Academy of Society of the United States of America , pp.6698-6703, 2004
[51] Javier Lario-Garc´ıa, Ramon Pall`as-Areny, Constant-phase element identification in conductivity sensors using a single square wave, Sensors and Actuators A, vol. 132 , pp.122–128, 2006
[52] Joseph Wang,Analytical Electrochemistry 3rd edition, John Wiley & Sons, 2006
[53] John H. Highberger, The Isoelectric Point of Collagen, J. Am. Chem. Soc., vol.61, pp. 2302–2303, 1939
[54] P. Seriburi and D.R.Meldrum, Applying electric cell-substrate impedance sensing (ECIS) to study cell ahgesion and cell spreafing of an individual cell, Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp.329-332, 2008
[55] D.W. Greve and X. Huang,D. Nguyen and M.M. Domach, Modeling of impedance of cell-covered electrodes, Sensors Proceedings of IEEE, vol.2, pp. 1358-1363, 2003
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2013-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明