博碩士論文 995202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.205.93.2
姓名 朱恒逸(Heng-Yi Jhu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用樣型識別與群體智慧技術於H.264/AVC之快速模式選擇
(H.264/AVC Fast Mode Decision Using Pattern Recognition and Swarm Intelligence)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 應用於旋積盲訊號源分離之BIC基礎式訊號源數目估測及相位補償技術
★ 基於非均勻尺度-頻率圖之環境聲音辨識★ 應用於非監督式音訊轉換偵測之新型方法及特徵參數
★ 旋積盲訊號源分離之超大型積體電路架構設計★ 使用位元率失真之群聚現象與多階層分類機制實現H.264/AVC之快速模式選擇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 視訊編碼廣泛應用於電視傳播、網路串流、監視系統、視訊會議、多媒體裝置…等等,是現今生活中不可或缺的一環。在新制定的H.264/AVC編碼標準中,增加了許多多樣化的編碼技術,相較於MPEG-2、H.263等過去的視訊編碼標準,H.264/AVC提供更佳的編碼效能,提高壓縮率並增進畫面品質;但所付出的代價是因應而來的巨大運算量,使得H.264/AVC無法在即時編碼的應用環境中輕易地實現。因此,如何有效降低編碼的運算量,並維持應有的壓縮品質,是重要且熱門的研究主題。本研究針對H.264/AVC之畫面內編碼與畫面間編碼,分別提出有效的快速模式選擇演算法,不但大幅度的降低了編碼所需的運算時間,更保持了相當優越的壓縮品質。經過實驗,本研究所提出的方法可在畫面內編碼與畫面間編碼中,分別帄均節省約60%與46%的編碼時間,並能維持非常接近H.264/AVC標準之壓縮品質。
摘要(英) Video coding has been widely applied to TV transmission, network stream, monitoring system, video conferencing, and multimedia devices. In the video coding standard H.264/AVC, several coding techniques are added. Compared to old Standards such as MPEG-2 and H.263, H.264/AVC provides better coding efficiency. It raises the compression ability and enhances the quality of pictures. But it pays a huge computation time for it, making H.264/AVC cannot be realized easily in the real time coding environment. So, reducing the huge coding complexity with good compression quality has been a hot issue. This thesis focuses on speeding up both the inter coding and intra coding procedures. We propose two efficient mode decision algorithms for intra coding and inter coding. They greatly reduce the coding time but keep superior coding performance. After our experiments, the approaches we proposed speed up intra coding and inter coding by 60% and 46%, respectively. Besides, its coding performance is very close to original H.264/AVC.
關鍵字(中) ★ 快速模式選擇
★ H.264/AVC
★ 群體智慧
★ 樣型識別
關鍵字(英) ★ pattern recognition
★ H.264/AVC
★ fast mode selection
論文目次 第一章 緒論 ........................................................................................... - 1 -
1-1 研究動機與目的 .................................................................................................... - 1 -
1-1-1 H.264/AVC 壓縮標準簡介 ............................................................................. - 1 -
1-1-2 現代對視訊編碼的需求 ................................................................................ - 3 -
1-2 論文架構 ................................................................................................................ - 4 -
第二章 H.264/AVC 預測編碼介紹 .......................................................... - 6 -
2-1 H.264/AVC 視訊標準之預測編碼 ......................................................................... - 6 -
2-1-1 可變動之區塊大小 ........................................................................................ - 6 -
2-1-2 多畫面參考 .................................................................................................... - 7 -
2-1-3 畫面內像素預測 ............................................................................................ - 8 -
2-1-4 區塊模式 ........................................................................................................ - 9 -
第三章 相關研究與文獻探討 ............................................................... - 11 -
3-1 研究問題簡介 ...................................................................................................... - 11 -
3-2 INTER 快速模式選擇演算法 ................................................................................. - 11 -
3-2-1 SKIP 模式偵測 .............................................................................................. - 11 -
3-2-2 區塊大小預測 .............................................................................................. - 13 -
3-2-3 區塊大小分類 .............................................................................................. - 14 -
3-3 INTRA 快速模式選擇演算法 ................................................................................. - 16 -
3-3-1 修改位元率失真成本最佳化方法 .............................................................. - 16 -
3-3-2 Intra 模式預測 ............................................................................................. - 17 -
第四章 研究方法 ................................................................................. - 19 -
4-1 簡介 ...................................................................................................................... - 19 -
4-2 INTRA 編碼之快速模式選擇 ................................................................................. - 20 -
4-2-1 特徵選取 ...................................................................................................... - 20 -
4-2-2 快速模式選擇 .............................................................................................. - 26 -
4-2-3 Chroma 8? 8 與Intra 16? 16 之快速模式選擇 .......................................... - 35 -
4-3 INTER 編碼之快速模式選擇 ................................................................................. - 35 -
4-3-1 粒子群最佳化簡介 ...................................................................................... - 35 -
4-3-2 特徵選取 ...................................................................................................... - 37 -
4-3-3 分類演算法 .................................................................................................. - 40 -
第五章 實驗結果 ................................................................................. - 44 -
5-1 環境設定 .............................................................................................................. - 44 -
5-1-1 PCA基底之訓練設定 .................................................................................. - 44 -
5-1-2 SVM之訓練設定 ......................................................................................... - 44 -
5-1-3 PSO之訓練設定 .......................................................................................... - 45 -
5-1-4 編碼測詴環境 .............................................................................................. - 45 -
5-2 評比標準 .............................................................................................................. - 46 -
5-2-1 Delta-PSNR、Delta-BR、Time Saving ......................................................... - 46 -
5-2-2 RD-Curve ....................................................................................................... - 48 -
5-2-3 BDPSNR、BDBR ........................................................................................... - 49 -
5-3 效能比較 .............................................................................................................. - 49 -
5-3-1 與JM之效能比較 ....................................................................................... - 50 -
5-3-2 與近期文獻之效能比較 .............................................................................. - 52 -
第六章 結論與未來 .............................................................................. - 55 -
6-1 實驗結果探討 ...................................................................................................... - 55 -
6-2 問題剖析與未來 .................................................................................................. - 55 -
6-3 總結 ...................................................................................................................... - 56 -
參考文獻 .................................................................................................. - 57 -
參考文獻 [1] ITU-T Rec. H.264/ISO/IEC 14496-10 AVC. Joint Video Team (JVT) of ISO MPEG and ITU-T VCEG, JVT-G050, 2003.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard, " IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560 - 576, 2003.
[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-adaptive binary arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 620–636, July 2003
[4] J. C. Wang, H. Y, Chu, “Fast H.264 intra coding using SVM and PCA augmented features.” to be submitted.
[5] J. C. Wang, Y. H. Sung, H. Y, Chu, “A PSO based fast H.264 inter coding algorithm in H.264/AVC.” to be submitted.
[6] J. C. Wang, H. Y, Chu, A fast video intra coding method, to be applied to ROC invention patent.
[7] J. C. Wang, Y. H. Sung, H. Y, Chu, Fast Video Inter Coding Algorithm Using PSO, to be applied to ROC invention patent.
[8] C. Kannangara et al., “Low-complexity skip prediction for H.264 through Lagrangian cost estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 2, pp. 202–208, Feb. 2006.
[9] Y. Zhao, M. Bystrom, and I. E. G. Richardson, “A MAP framework for efficient skip/code mode decision in H.264,” in Proc. ICIP2006, Atlanta, GA, Oct. 8–11, 2006.
[10] B.-G. Kim, “Novel inter-mode decision algorithm based on macroblock (MB) tracking for the P-slice in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 2, pp. 273–279, Feb. 2008.
[11] S. H. Ri, Y. Vatis, and J. Ostermann, “Fast inter-mode decision in an H.264/AVC encoder using mode and lagrangian cost correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 302–306, Feb. 2009.
[12] Y.H. Kim and B.G. Kim, “Fast block mode decision algorithm in H.264/AVC video coding,” Journal of Visual Communication and Image Representation, vol.19, no. 3, pp.175-183, Apr. 2008.
[13] B. Zhan, B. Hou, and R. Sotudeh, "Fast mode selection to reduce the encoding complexity of H.264/AVC," ISCAS2008, Seattle, WA, USA, pp. 3570-3573, 18 – 20 May 2008.
[14] W. P. Ma, S. Y. Yang, L. Gao, and C. K. Pei, "An Efficient Fast Mode Decision Algorithm Based on Motion Cost for H.264 Inter Prediction," IITAW2008, New York, New York, USA, pp. 550-553, Jun. 28 – Jul. 3, 2009.
[15] D. Wu, F. Pan, K. P. Lim, and S. Wu et al., “Fast intermode decision in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol.,vol.15,no.7,pp. 953–958, Jul. 2005.
[16] Y. M. Lee and Y. Lin, “Zero-block Mode Decision Algorithm for H.264/AVC,” IEEE Trans. Image Processing, vol. 18, no. 3, pp. 524-533, Mar. 2009.
[17] Y. Huang, Q. Liu, and T. Ikenaga, “Macroblock feature and motion involved multi-stage fast inter mode decision algorithm in h.264/avc video coding,” IEICE Trans. Fundamentals, pp. 1041–1044, Nov. 2009.
[18] T.-Y. Kuo and C.-H. Chan, “Fast variable block size motion estimation for H.264 using likelihood and correlation of motion field,” IEEE Trans. Circuit Syst. Video Technol., vol. 16, no. 10, pp. 1185–95, Oct. 2006.
[19] L. Shen, Z. Liu, Z. Zhang, and X. Shi, “Fast inter mode decision using spatial property of motion field,” IEEE Trans. Multimedia, vol. 10, no. 10, pp. 1208–1214, Oct. 2008
[20] H. Zeng, C. Cai, and K.-K. Ma, “Fast mode decision for H.264/AVC based on macroblock motion activity,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 4, pp. 491–499, Apr. 2009
[21] Z. Liu, L. Shen, and Z. Zhang, “An efficient intermode decision algorithm based on motion homogeneity for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 1, pp. 128–132, Jan. 2009.
[22] T. Zhao, H. Wang, S. Kwong, C.-C. Jay Kuo, “Fast mode decision based on mode adaptation,” IEEE Trans. Circuits and Syst. Video Technol., vol. 20, no. 5, pp. 697–705, May. 2010.
[23] W. Geng and W. Lenan, “Low complexity mode decision for H.264 based on macroblock motion classification,” ISISE2009, Shanghai, China, pp. 227–230, 26-28 Dec. 2009.
[24] M. Yang and W. Wang, “Fast macroblock mode selection based on motion content classification in H.264/AVC,” in Proc. IEEE Int. Conf. Image Process., vol. 2, pp. 24–27, Oct. 2004.
[25] C. H. Lampert, “Machine learning for video compression: macroblock mode decision,” ICPR2006, Hong Kong, China, vol. 1, pp. 936–940, Aug. 2006,
[26] P. Carrillo, “ Low complexity H.264 video encoder design using machine learning techniques,” MS Thesis, Department of Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA, Nov. 2008.
[27] W. Ma, S. Yang and L. Gao et al., “Fast mode selection scheme for h.264/AVC inter prediction based on statistical learning method,” ICME2009, New York, New York, USA, pp. 17-20, Jun. 28-Jul. 3 2008.
[28] A. Jagmohan and K. Ratakonda, “Time-efficient learning theoretic algorithms for h.264 mode selection,” ICIP2004, Singapore, vol. 2 pp. 749–752, Oct. 2004.
[29] Y. Vatis, L. Lu, and A. Jagmohan, “Inter mode selection for H.264/AVC using time-efficient learning-theoretic algorithms” ICIP2009, Cairo, Egypt, pp. 3413-3416, Nov. 2009.
[30] J. Kim, M. Kim, S. Hahm, I. Cho, C. Park, “Block-mode classification using SVMs for early termination of block mode decision in H.264|MPEG-4 Part 10 AVC,” ICAPR2009, Kolkata, Feb. 2009
[31] P. J. Lee, H. K. Chang, S. H. Huang, W. J. Wang, “Coding mode determination by using fuzzy logic in H.264 motion estimation,” NAFIPS2009, Cincinnati, Ohio, USA, Jun. 2009.
[32] J. You, C. Choi and J. Jeong, “Modified Rate Distortion Optimization Using Inter-Block Dependence for H.264 Intra Coding,” IEEE Trans. Consum. Electron., vol. 54, pp. 1383-1388, Oct 2008.
[33]C. S. Tseng, H. M. Wang, and J. F. Yang, “Enhanced intra-4x4 mode decision for H.264/AVC coders,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 8, pp. 1027–1032, Aug. 2006.
[34] Y. M. Lee, Y. T. Sun and Y. Lin, “SATD-based intra mode decision for H.264/AVC video coding”, IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 463-469, March 2010.
[35] A. C. Tsai, J. F. Wang, J. F. Yang, and W. G. Lin, “Effective subblockbased and pixel-based fast direction detections for H.264 intra prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 7, pp. 975–982, Jul. 2008.
[36]K. Bharanitharan, B. D. Liu, J. F. Yang, and W. C. Tsai, “A low complexity detection of discrete cross differences for fast H.264/AVC intra prediction,” IEEE Trans. Multimedia, vol. 10, no. 7, pp. 1250–1260, Nov. 2008.
[37] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode decision algorithm for intra prediction in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 7, pp. 813–822, Jul. 2005.
[38] A. C. Tsai, A. Paul, J. C. Wang, and J. F. Wang, “Intensity Gradient Technique for Efficient Intra-Prediction in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 5, pp. 694–698, May 2008.
[39] H. Li, K. Ngan, and Z. Wei, “Fast and efficient method for block edge classification and its application in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 6, pp. 756–768, Jun. 2008.
[40] J. C. Wang, J. F. Wang, J. F. Yang, and J. T. Chen, “A fast mode decision algorithm and its VLSI design for H.264/AVC intra-prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10, pp.1414–1422, Oct. 2007.
[41] D. Quan and Y. S. Ho, “Categorization for fast intra prediction mode decision in H.264/AVC,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp. 1049–1056, 2010.
[42] C. S. Won, D. K. Park, and S. J. Park, “Efficient use of MPEG-7 edge histogram
descriptor,” Elec. Tel. Res. Inst. J., vol. 24, no. 1, pp. 23–30, Feb. 2002.
[43] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of IEEE Conference on Neural Networks, Perth, Australia, vol.4, pp.1942-1948,1995.
[44] H.264/AVC Reference Software JM17.0, [Online]. Available: http://iphome.hhi.de/suehring/tml/download/old_jm/jm17.2.zip
[45] G. Bjontegaard, Calculation of Average PSNR Differences Between RD Curves, Doc. VCEG-M33, Apr. 2001.
指導教授 王家慶(Jia-ching Wang) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明