博碩士論文 995202082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:54.221.145.174
姓名 張世佳(Shih-chia Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在群體人數估計應用中使用不同特徵與回歸方法之分析比較
(Estimating Number of People in Groups using Different Features and Regression Method: A Survey)
相關論文
★ 以單一攝影機實現單指虛擬鍵盤之功能★ 基於視覺的手寫軌跡注音符號組合辨識系統
★ 利用動態貝氏網路在空照影像中進行車輛偵測★ 以視訊為基礎之手寫簽名認證
★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測★ 影像中賦予信任等級的群眾切割
★ 航空監控影像之區域切割與分類★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計★ 影像特徵點匹配應用於景點影像檢索
★ 自動感興趣區域切割及遠距交通影像中的軌跡分析★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測
★ Analysis of the Performance of Different Classifiers for Cloud Detection Application★ 全天空影像之雲追蹤與太陽遮蔽預測
★ 在全天空影像中使用紋理特徵之雲分類★ 市區監控影像之十字路口感興趣區域自動偵測與車流估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於電腦視覺的技術已經漸漸發展到較為成熟的階段,以及電腦計算效能的提升,愈來愈多人投入了智慧型視訊監控系統的研究,目前架設在各處的監控式攝影機如果沒有人為的操作,很難在緊急的情況下發揮效用,因此更加需要發展智慧型監控系統,使其能夠在無人的狀態也能發揮監控的效果,例如在商場中,若能使用智慧型監控系統來進行人潮流量的估算,便能夠提供相當有用的訊息給商場的負責人,在人群行為分析方面,若能夠利用智慧型監控系統來分析人群的行為,即時發現異常的行人流量,在安全上也能夠提供完善的資訊,因此智慧型監控的發展已經愈來愈受到重視。
本論文的目的是估計複雜環境下移動中的人群內行人的數量,主要分析人群中可以偵測到的各種特徵對於人數估計的結果比較。在複雜的環境,我們利用連續影像相減法來取得移動中的人群位置,對移動中的人群做不同的特徵擷取,分別是角點的偵測、SURF點的偵測以及頭部肩膀部分的偵測,並將擷取到特徵數量用來建成不同的特徵組合,使用類神經的單層感知機以及Support Vector Regression兩種回歸分析方法來建成估測人數的回歸模型。在進行人群估測的時,我們同時考慮了分群與不分群的方式,不分群的方式就是將整張圖片擷取到的特徵數量一起訓練,而分群的方式則是增加了密度的資訊,因為畫面中的人群分佈距離鏡頭的遠近並不相同,所以我們預估不同人群所包含的特徵數量雖然相同,但是前景的大小卻是不同的,因此人群中的人數應該也會有所差異,參考了密度資訊以後,我們一樣將其特徵數量建立回歸模型,並用來估測人數。
在實驗的部分,我們使用PETS2009的資料集,從中挑選出四個適合的場景來做人群數量的估算,並且比較各種特徵組合與回歸方法估測的結果,總結來說,使用愈多的特徵種類來估算人數能夠達到較小的誤差,詳細的討論與分析將會在論文當中完整描述。
摘要(英) Computer vision technology has gradually developed into a more mature stage. Today, with the prevalence of surveillance cameras, automated and intelligent surveillance functions are desired. People counting and crowd analysis has become an important topic in intelligent surveillance applications. In the thesis, we survey the methods of estimating the number of people in moving crowds via regression in a complex environment. We analyze the effects of features and regression methods one the performance of estimation.
First, we use frame differencing to get the approximate location of moving crowds. Afterwards, we detect three different types of features from these locations. The features are the number of detected corner features, SURF features and head-shoulder regions. Finally, we use perceptron and Support Vector Regression to build regression models to estimate the number of people in the crowds. Also, we consider the way of clustering the foreground connect-components into clusters. The distances between the clusters and the camera are different. Since clusters nearer to the camera would have more foreground pixels and result in more detected feature points, the estimation would be affected. Therefore, we also consider density information into the feature combination and build regression models to estimate the clustered crowds.
We use the public PETS 2009 dataset to perform the experiments. We pick four appropriate views for estimating and compare each feature combination and regression model. Overall speaking, adding more types of features in the feature combination results in smaller estimation errors. Detailed analysis and discussions on the performance are explained in this thesis.
關鍵字(中) ★ 電腦視覺
★ 人群估計
★ 智慧型監控系統
關鍵字(英) ★ computer vision
★ people counting
★ intelligent surveillance system
論文目次 Abstract I
摘要 II
致謝 III
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 2
1.3 系統流程 8
1.4 論文架構 9
第二章 相關文獻 10
2.1SURF(Speeded Up Robust Features) 10
2.1.1感興趣的特徵點 11
2.1.2 SURF建構尺度空間 12
2.1.3 SURF特徵點定位 12
2.1.4 SURF主方向判定 13
2.1.5 SURF特徵描述子 14
2.2 Harris Corner 15
2.3Histogram of Oriented Gradient 17
2.3.1梯度計算 18
2.3.2統計梯度直方圖 18
2.3.3 HOG特徵描述 19
2.3.4分類器 20
2.4Support Vector Machine/Regression 21
2.4.1 Support Vector Machine 21
2.4.2 Support Vector Regression 25
2.5單層感知機 27
2.5.1感知機架構 27
2.5.2感知機收斂定理 28
第三章 群體人數估計 31
3.1連續影像相減法 31
3.2SURF和角點特徵點擷取 33
3.3頭部肩膀偵測 34
3.3.1形狀模型 34
3.3.2運動模型 35
3.4密度資訊 38
3.5回歸分析 39
3.5.1單層感知機 39
3.5.2Support Vector Regression 41
第四章 系統實作與實驗結果 42
4.1實驗環境與實驗資料 42
4.2各種特徵擷取與估測結果 45
第五章 結論與未來研究方向 53
5.1結論 53
參考文獻 55
參考文獻 [1] 彭振軒, 使用樣板筆隊做進出口行人數量統計, 中央大學碩士論文, 2006.
[2] Albiol, Antonio, Silla, J. Maria, Alviol, Alberto, Mossi and M. Jose, "Video Analysis using Corner Motion Statistics," In Performance Evaluation of Tracking and Surveillance workshop at CVPR, pp. 31-38, 2009.
[3] D. Conte, P. Foggia, G. Percannella, F. Tufano and M. Vento, "Counting Moving People in Videos by Salient Points Detection," International Conference on Pattern Recognition, pp. 1743-1744, 2010.
[4] D. Conte, P. Foggia, G. Percannella, F. Tufano and M. Vento, "A Method for Counting Moving People in Video Surveillance Videos," Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume, pp. 1-9, 2010.
[5] K. E. Aziz, D. Merad and B. Fertil, "Pedestrian head detection and tracking using skeleton graph for people counting in crowded environments," Signal and Image Processing and Applications, pp. 1-4, 2011.
[6] M. Patzold and R. H. Evangelio, "Counting people in crowded enivronments by fusion of shape and motion information," 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 157-159, 2010.
[7] S. Choudri, J. M. Ferryman and A. Badii, "Robust Background Model for Pixel Based People Counting using a Single Uncalibrated Camera," IEEE International Workshop on Performance Evaluation of Tracking and SurveillanceTwelfth, pp. 1-8, 2009.
[8] W. Ge and R. T. Collins, "Evaluation of Sampling-based Pedestrian Detection for Crowd Counting," IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1-7, 2009.
[9] Y.-L. Hou and G. K. Pang, "People Counting and Human Detection in a Challenging Situation," IEEE Transaction, pp. 24-27, 2010.
[10] P. Sabzxmeydani and G. Mori, "Detecting Pedestrians by Learning Shapelet Features," Computer Vision and Pattern Recognition, pp. 1-5, 2007.
[11] A. B. Hillel, D. Levi, E. Krupka and C. Goldberg, "Part-Based Features Synthesis for Human Detection," European Conference on Computer Vision, pp. 127-142, 2010.
[12] B. Wu and R. Nevatia, "Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors," International Journal of Computer Vision, pp. 90-97, 2007.
[13] L. Oliveira and U. Nunes, "On Exploration of Calssifier Ensemble Synergism in Pedestrian Detection," IEEE Transactions on Intelligent Transportation Systems, pp. 16-27, 2010.
[14] G. Gualdi, A. Prati and R. Cucchiara, "Multi-stage Sampling with Boosting Cascades for Pedestrian Detection in Images and Videos," European Conference on Computer Vision, pp. 196-209, 2010.
[15] H. Han and Y. Fan, Human Detection Based on Curvelet Transform and Integrating Heterogeneous Features, Institute of Intelligent Information Processing, 2011.
[16] W. Gao and H. Ai, "Adaptive Contour Features in Oriented Granular Space for Human Detection and Segmentation," IEEE Conference on Computer Vision and Pattern Recognition, pp. 1786 - 1793 , 2009.
[17] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," in International Conference on Computer Vision & Pattern Recognition vol.2, p. 886–893, 2005.
[18] Cortes, Corinna, a. Vapnik and V. N, Support-Vector Networks, Machin Learning.
[19] D. G. Lowe, "Object recognition from local scale-invariant," Proceedings of International Conference on Computer , pp. 1150-1157, 1999.
[20] C. Harris and M. Strphens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference, 1988.
[21] 黃子桓, “Support Vector Regression”.
[22] 蘇木春,張孝德, 機器學習:類神經網路、模糊系統、以及基因演算法, 全華科技圖書股份有限公司.
[23] K.-C. Hui and W.-C. Siu, "Extended Analysis of Motion-Compensated Frame," IEEE TRANSACTIONS ON IMAGE PROCESSING, pp. 1232-1245, 2007.
[24] Werlberger and Manuel, "Anisotropic Huber-L Optical Flow," British Machine Vision Conference, pp. 1-9, 2009.
[25] L. Chen, H. Yang, Takaki and T. Ishii, "Real-time frame-straddling-based optical flow detection," IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2447-2452, 2011.
[26] S.-K. Liao and B.-Y. Liu, "An edge-based approach to improve optical flow algorithm," 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), pp. V6-45 - V6-51 , 2010.
[27] Stanisavljevic, Kalafatic and Z. Ribaric, "Optical flow estimation over extended image sequence," Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean, pp. 546-549, 2000.
[28] I. Ishii, T. Taniguchi, K. Yamamoto and T. Takaki, "High-Frame-Rate Optical Flow System," IEEE Transactions on Circuits and Systems for Video Technology, pp. 105-112, 2012.
[29] 王惠青, 劉兆文 且 林雯婷, Multivariate Statistical Methods for Modeling, 王惠青.
[30] C.-C. Chang and C.-J. Lin, "LIBSVM -- A Library for Support Vector Machines," 2001~2012. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[31] Shaw, Intellectual ability and cortical development in children and adolescents, Nature, 2006.
[32] R. T. C. Weina Ge, “Evaluation of Sampling-based Pedestrian Detection for Crowd Counting,” IEEE International Workshop on PETS, 2009.
[33] D. G. Lowe, “ Object recognition from local scale-invariant features,” Proceedings of the International Conference on Computer Vision. , 1999.
[34] C. S. J. Z. S. Paisitkriangkrai, “Performance evaluation of local features in human classification and detection,” IET Computer Vision, 2008.
[35] R. N. Bo Wu, “Optimizing Discrimination-Efficiency Tradeoff in Integrating Heterogeneous Local Features for Object Detection,” IEEE Conference on Computer Vision and Pattern Recognition, 2008.
[36] 曾宥臻, “影像中賦予信任等級的群眾切割,” 中央大學資工碩士論文, 2011.
[37] R. Martin, M. Stefan, B. Gregory 且 D. Joachim, “Pedestrian Detection by Probabilistic,” Springer-Verlag Berlin Heidelberg, 2009.
[38] Frolova, Darya, Simakov and Denis, Harris Corner Detector, The Weizmann Institute of Science, 2004.
[39] Biano, Support Vector Machine 簡介.
[40] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool, "Speeded-Up Robust Features," European Conference on Computer Vision, pp. 1-10, 2008.
指導教授 鄭旭詠(Hsu-Yung Cheng) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明