博碩士論文 995202097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.117.189.107
姓名 黃彥翔(Yen-hsiang Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 高效率物件切割硬體加速器設計與立體視覺應用
(Design and Implementation of a High-Efficiency Segmentation Hardware Accelerator and Application in Stereo Vision)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 典型的立體視覺原理是基於雙攝影機同步取像和一系列複雜的影像處理,在軟體開發通常需要高效能的處理器以實現複雜演算法,因此使得立體視覺在即時與嵌入式系統的實現開發上受到成本與即時性技術上的限制。本研究藉由MIAT嵌入式硬體設計方法論,設計一個基於SOM神經網路的高效率物件切割硬體加速器,對影像進行色彩切割,並將物件連通標定與基於SAD的立體匹配演算法設計成硬體電路,再以管線化控制器進行平行化架構整合,進而合成全硬體的高速立體視覺系統。其性能可達13.8 Frames/sec,可滿足即時系統需求。其中的高效率物件切割硬體加速器,大幅減少物件切割模組的記憶體存取次數,有效提升物件切割效能。
摘要(英) A typical stereo vision principle basically consists of two parts. One is the image extracted using two synchronous cameras, and another is a series of complex image processing. However, high-efficacy processors are often required to implement complex algorithms in software development. Thus, stereo vision is difficult to be achieved on the embedded system applications, because of its low-cost and limited resources. In this paper, we designed a high-efficiency segmentation hardware accelerator, based on SOM (Self-Organizing Map) neural network and using Hierarchical Robotic Discrete-Event Modeling, for color segmentation. Then, all the algorithms, connecting component labeling and stereo matching using SAD (Sum of Absolute Difference), were implemented as hardware and integrated with a pipeline controller. Finally, we synthesize a high-speed stereo vision as hardware system. As a result, our system is able to generate images at the speed of up to 13.8 images / sec. This performance makes our system usable in real-time embedded systems. Above all, we reduce the memory access times significantly and raise the performance effectively in high-efficiency segmentation hardware accelerator.
關鍵字(中) ★ SOM神經網路
★ 立體視覺
★ 物件切割
★ FPGA
關鍵字(英) ★ stereo vision
★ segmentation
★ FPGA
★ SOM neural network
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖目錄 VII
表目錄 X
第一章、緒論 1
1.1 研究背景 1
1.2 研究目標 2
1.3 論文架構 2
第二章、文獻回顧 3
2.1 立體視覺原理 3
2.1.1 針孔攝影機模型 4
2.2 物件切割 6
2.3 立體匹配 8
2.3.1 區域方法 8
2.3.2 全域方法 10
2.4 SOM神經網路硬體設計 11
第三章、嵌入式立體視覺系統設計 13
3.1 雙攝影機取像控制器 14
3.1.1 影像擷取 14
3.1.2 影像記憶體存取控制器 21
3.1.3 影像顯示控制器 22
3.2 影像前處理 23
3.2.1 SOM色彩分群 23
3.2.2 連通物件標定 26
3.2.3 影像記憶體緩衝區 30
3.3 立體匹配 32
3.4 軟體模擬 32
3.4.1 立體視覺演算法模擬 33
3.4.2 深度估測 36
第四章、立體視覺嵌入式硬體設計 38
4.1 硬體合成方法論 38
4.2 雙攝影機取像模組 40
4.3 影像切割模組 43
4.3.1 SOM訓練模組SOM_Train 43
4.3.2 SOM應用模組SOM_Apply 49
4.4 連通物件標定模組 51
4.5 立體匹配模組 54
4.6 管線化控制器與系統整合 55
第五章、系統整合實驗 61
5.1 實驗平台 61
FPGA開發平台 61
CMOS 影像感測器 62
5.2 立體視覺周邊控制模組 66
5.3 SOM物件切割模組 68
5.4 連通物件標定模組 69
5.5 立體匹配模組 70
5.6 系統效能實驗 70
第六章、結論 72
6.1 結論 72
6.2 未來展望 73
參考文獻 74
附錄一 79
SOM神經網路訓練模組 79
SOM神經網路應用模組 80
附錄二 81
連通物件標定模組 81
1 Pass CCP 82
Case 83
Case2 83
Merge 84
General update 85
Merge update 85
附錄三 86
立體匹配模組 86
SAD 87
參考文獻 [1] Sang Hwa Lee and Siddharth Sharma, “Real-Time Disparity Estimation Algorithm For Stereo Camera Systems”, IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011.
[2] 陶金旭、翁松佑和俞伯璋,「階層式模糊聚類演算法於影像分割之應用」,行政院國家科學委員會專題研究計畫成果報告,民國91年10 月。
[3] Carlo Dal Mutto and Pietro Zanuttigh and Guido M. Cortelazzo, “Scene Segmentation Assisted by Stereo Vision”, IEEE Department of Information Engineering, 2011.
[4] Bram van Ginneken*, Alejandro F. Frangi, Joes J. Staal, Bart M. ter Haar Romeny, and Max A. Viergever, “Active Shape Model Segmentation With Optimal Features,” IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 8, AUGUST 2002.
[5] Viet-Quoc Pham, Keita Takahashi, et al., ”Foreground-Background Segmentation using Iterated Distribution Matching”, IEEE Computer Vision and Pattern Recognition, 20-25 June 2011.
[6] Theo Gevers, “Adaptive Image Segmentation by Combining Photometric Invariant Region and Edge Information”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 7, JULY 2002.
[7] A. Redert, E. Hendricks, and J. Biemond, “Correspondence estimation in image pairs”, IEEE Signal Proc. Magazine, vol. 16, no. 3, pp. 29-46, 1999.
[8] D. Scharstein and R. Szeleiski, “A taxonomy and evaluation of dense two frame stereo correspondence algorithm”, International Journal of Computer Vision, vol. 47, no. 1/2/3, pp. 7-42, 2002.
[9] K. L. Chung and W. Y. Chen, “Fast adaptive PNN-based thresholding algorithms,” Pattern Recognition, 36(12), p.2793-2804, 2003.
[10] Chris Stauffer and W. Eric L. Grimson, “Learning Patterns of Activity Using Real-Time Tracking,” IEEE TRANSACTIONS On PATTERN ANALYSIS And MACHINE INTELLIGENCE, VOL. 22, NO. 8, AUGUST 2000.
[11] Ching-Han Chen, Jia-Hong Dai, and Chen-Yuan Chen, “The Design and Synthesis Using Hierarchical Robotic Discrete-Event Modeling,” Journal of Vibration and Control, 2012.
[12] Wan-Yu Chen, “Fast Algorithm and Architecture Design for Stereo Image Synthesis System,” July 27, 2006.
[13] 三維掃描器與機器視覺原理與發展歷程,2011-10-15,取自http://www.sntar.com/news/3d-information//news/3d-information389.html。
[14] Wu, ” System Design and Hardware Implementation of Embedded Stereo Vision”, Master Thesis, National Central University, 2011.
[15] K. H. Chang, et al., ”A study on the economic polarized light stereoscopic projection system,” Master Thesis, National Central University, Department of Optics and Photonics, p.7-14, 2007.
[16] N. Otsu, “A threshold selection method from gray level histogram,” IEEE transactions on System, Man, and Cybernetics, SMC-8, 1978, p.62-66.
[17] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision Graphics,and Image Processing, 29(3), p.273-285, 1985.
[18] K. L. Chung and W. Y. Chen, “Fast adaptive PNN-based thresholding algori- thms,” Pattern Recognition, 36(12), p.2793-2804, 2003.
[19] G.J. McLachlan. “The classification and mixture maximum likelihood approaches to cluster analysis”, In Handbook of Statistics, 1982.
[20] D.A. Binder. “Bayesian cluster analysis” Biometrika, 1978.
[21] A.D. Gordon, J.T. Henderson. “Algorithm for Euclidean sum of squares classification”, Biometrics, 1977.
[22] J. T. Tou and R. C. Gonazlez, “Pattern Recognition Principles,” Reading MA:Addison-Wesley , 1974.
[23] O. Verevka, “The local K-means algorithm for color image quantization,” M.Sc. dissertation, Univ. Alberta, Edmonton, AB,Canada, 1995.
[24] E.H. Ruspini. “A new approach to clustering” Information and Control, 1969.
[25] L.A. Zadeh. “Fuzzy sets. Information Control”, June 1965.
[26] J.C. Bezdek. “Pattern Recognition with Fuzzy Objective Function”, Plenum, New York, 1981.
[27] A. H. Dekker, “Kohonen neural networks for optimal color quantization”, Network: Computat. Neural Syst., Volume 5, 1994.
[28] 蘇木春,張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,修訂二版,全華圖書,2007。
[29] 陳慶瀚,「類神經網路:Self-Organizing Map Neural Network」。義守大學電機系,2002。
[30] 張仁明,林達德:類神經網路與貝氏方類法應用於影像分割之比較研究。國立台灣大學生物產業機電工程學研究所,取自agriauto.bime.ntu.edu.tw/printed/ciam/ciam08/8-3/8-3-6.pdf
[31] O. Veksler, “Fast variable window for stereo correspondence using integral images,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume.1, p. I-556-I-561, 2003.
[32] Sang Hwa Lee and Siddharth Sharma, “Real-Time Disparity Estimation Algorithm For Stereo Camera Systems”, IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011.
[33] Konstantinos G. Derpanis, “The Gaussian Pyramid”, February 5, 2005.
[34] Jasmine Banks, “Reliability Analysis of the Rank Transform for Stereo Matching”, IEEE Transactions on Systems, Man, and Cybernetics, VOL. 31, NO. 6, 2001
[35] O. Veksler, “Fast variable window for stereo correspondence using integral images,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume.1, p. I-556-I-561, 2003.
[36] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic programming”, IEEE transactions on pattern analysis and machine intelligence, Volume. 7, p. 139-154, 1985.
[37] J. Sun, N.-N. Zheng and H.-Y. Shum, “Stereo Matching Using Belief Propagation,” IEEE transactions on Pattern Analysis and Machine Intelligence, Volume. 25, No. 7, 2003.
[38] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo matching using hierarchical belief propagation,” in Proceedings of The British Machine Vision Conference, 2006.
[39] K. Obermayer, H. Ritter, and K. Schulten, “Large-scale simulations of self-organizing neural networks on parallel computers: Application tobiological modeling,” Parallel Comput., vol. 13, no. 3, pp. 381–404,1990.
[40] R. Mann and S. Haykin, “A parallel implementation of Kohonen feature maps on the warp systolic computer,” in Proc. Int. Joint Conf. Neural Networks, vol. 2, Washington, DC, 1990, pp. 84–87.
[41] H. Siemon and A. Ultsch, “Kohonen networks on transputers: Implementation and animation,” in Proc. Int. Neural Network Conf., vol. 2, 1990, pp. 643–646.
[42] David C. Hendry, Andrew A. Duncan and Neil Lightowler, “IP Core Implementation of a Self-Organizing Neural Network,” IEEE Transactions on Neural Networks, Vol. 14, no. 5, September 2003.
[43] M. S. Melton, T. Phan, D. S. Reeves, and D. E. Van den bout, “The TInMANN VLSI chip,” IEEE Trans. Neural Networks, vol. 3, pp. 375–384,May 1992.
[44] T. Hamalainen, J. Sarrinen, and K. Kaski, “TUTNC: A general purposeparallel computer for neural network computations,” Microprocess. Microsyst., vol. 19, no. 8, pp. 447–465, Oct. 1995.
[45] P. Kolinummi, P. Hamalainen, T. Hamalainen, and J. Saarinen, “PARNEU: General-purpose partial tree computer,” Microprocess.Microsyst., vol. 24, pp. 23–42, 2000.
[46] Omnivision, SCCB Specifications.
[47] 2003 Vincent Bockaert,取自網路http://www.123di.com/dpr.php.
[48] H. Flatt, S. Blume, S. Hesselbarth, T. Schunemann, P. Pirsch , “A Parallel Hardware Architecture for Connected Component Labeling Based on Fast Label Merging”, Application-Specific Systems, Architectures and Processors, p. 144-149, 2008.
[49] Logitech, C510 Getting Started with Guide.
[50] Mayer, R.J., “IDEF0 Function Modeling,” Air Force Systems Command, May , 1992.
[51] David, R, “Grafcet :A powerful tool for specification of logic controllers,” IEEE Trans on control systems technology, Volume3, No 3, p253-268, 1995.
[52] Peter Alfke, “Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators,” XILINX Application Note, July 1996.
[53] Altera, DE2-115 User Manual.
[54] OmniVision OV7725 datasheet.
[55] I. Manolakos and E. Logaras,”HIGH THROUGHPUT SYSTOLIC SOM IP CORE FOR FPGAs”, Department of Informatics and Telecommunications, IEEE, 2007.
[56] W. Kurdthongmee, “A novel Kohonen SOM-based image compression architecture suitable for moderate density FPGAs”, Image and Vision Computing, 2007.
[57] M. Porrmann, S. Ruping, U. Ruckert, “SOM Hardware with Acceleration Module for Graphical Representation of the Learning Process”, Conference Publications, IEEE, 380 - 386, 1999.
指導教授 陳慶瀚(Ching-han Chen) 審核日期 2012-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明