博碩士論文 995203039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.235.105.97
姓名 梁朝富(Chao-Fu Liang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 電腦搜尋之短非同調區塊碼的進階結果
(Further Results on Computer-searched Short Noncoherent Block Codes)
相關論文
★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼★ 用於非同調解碼之多層次編碼調變
★ 么正空間時間籬柵碼之解碼演算法★ 由多層次編碼所架構之非同調碼
★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變★ 用於正交分頻多工系統具延遲處理器的空時碼
★ 用於非同調區塊編碼MPSK之A*解碼演算法★ 在塊狀衰退通道上的籬柵么正空時調變
★ 用於非同調區塊編碼MPSK之Chase演算法★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性
★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法
★ 具頻寬效益之非同調調變★ 非同調空時渦輪碼
★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較★ 循環字首及補零正交分頻多工系統在時序同步上之效能比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用固定星座圖與沒有固定結構星座圖的碼搜尋已經被提出了,但沒有固定結構星座圖的碼搜尋,過去只有碼字長度等於2的兩個例子。因此,本論文針對碼字長度、碼字個數增加的非同調區塊碼,從給定的非同調距離去搜尋碼字,並且考慮沒有固定結構的碼,提出了幾種演算法來搜尋碼字組成碼,為的是讓碼具有大的最小非同調距離,模擬結果亦顯示此種沒有結構的區塊碼的錯誤效能比使用固定星座圖的區塊碼來得好。
近來有篇論文提出使用查表法的差分編碼。根據此篇論文,另一種建立相差編碼表的方式被提出,稱為補碼字(codeword-added)演算法。補碼字演算法可簡單的建出星座點個數比群組個數多的相差編碼表,像是使用三十二點的正交振幅調變(32QAM)建立出16個群組的相差編碼表。本篇論文對補碼字演算法加了一個步驟,修改後的演算法所產生16個群組的三十二點的正交振幅調變(32QAM)相差編碼表有更好的錯誤率。除此之外,也把修改後的補碼字演算法用來建立區塊長度更長的相差編碼表。
摘要(英) Searching codewords with certain and uncertain constellation has been proposed. In the case of using uncertain constellation, there were only two cases while codeword length is equal than 2. Therefore, we search noncoherent block codes for greater codeword length and numbers according to a given noncoherent distance with uncertain constellation. We propose several algorithms to find codewords for building up unstructured codes with longer noncoherent distance. The results show that the error performance of unstructured block code is better than the block code using certain constellation.
Recently, a new paper of differential encoding by a look-up table was proposed. According that paper, there was another algorithm proposed as well, called codeword-added algorithm to build up a differential encoding table. Codeword-added algorithm can easily build up a differential encoding table when the numbers of constellation points are larger than the numbers of groups like the differential encoding table for 32QAM with sixteen groups. In this thesis, we add one step to codeword-added algorithm and construct a differential encoding table for 32QAM with sixteen groups as well. And its error performance is better than before. Besides, we also use the changed codeword-added algorithm to construct differential encoding tables which has longer block length.
關鍵字(中) ★ 相差編碼
★ 非同調
★ 區塊碼
關鍵字(英) ★ noncoherent
★ block code
★ differential encoding
論文目次 論文摘要 I
Abstract II
誌謝 III
目錄 IV
圖表目錄 V
第一章 緒論 1
1.1 介紹 1
1.2 研究動機 2
第二章 回顧 3
2.1 通道模型及非同調接收器 3
2.2 回顧以電腦搜尋的短非同調區塊碼 5
2.2.1 演算法 5
2.3 回顧位元對應(bit mapping)演算法 9
第三章 不限星座圖之短非同調區塊碼 10
3.1 回顧不限星座圖之碼設計方法 10
3.2 碼搜尋演算法與結果 11
3.2.1 演算法I 12
3.2.2 演算法II 14
3.2.3 演算法III 16
3.2.4 演算法IV 22
3.3 模擬結果 31
第四章 相差編碼 35
4.1 回顧相差編碼查表法 35
4.1.1 相差編碼查表法 35
4.1.2 使用補碼字演算法建構相差編碼表 36
4.2 改良補碼字演算法 38
4.2.1 N=2, 32QAM建立16個群組相差編碼表 39
4.2.2 N=3, Nr=2, 32QAM建立16個群組相差編碼表 46
第五章 結論 55
參考文獻 56
參考文獻 [1] R. Knopp and H. Leib, “M-ary coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[2] R. Y. Wei, “Nocoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp.978-986, June 2005.
[3] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 56, no. 10, pp. 1616-1625, Oct. 2008.
[4] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
[5] R. Y. Wei, S. S. Gu, and T. C. Sue, “Noncoherent block-coded TAPSK, ” IEEE Trans. Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
[6] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes, ” IEEE Trans. Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
[7] R. Y. Wei, “Differential encoding by a look-up table for quadrature amplitude
modulation,” IEEE Trans. Commun., vol. 59, pp. 84-94, Jan. 2011.
[8] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371-376, May 1977.
[9] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[10] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
[11] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
[12] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan. 1982.
[13] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[14] M. L. McCloud, M. Brehler, and M. K. Varanasi, “Signal design and convolutional coding for noncoherent space-time communication on the block-Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1186-1194, May 2002.
[15] K. Zeger and A. Gersho, “Pseudo-fray coding,” IEEE Trans. Commun., vol. 38, pp 2147-2158, Dec. 1990.
[16] Y. Li and X. G. Xia, “Constellation mapping for space-time matrix modulation with iterative demodulation/decoding,”IEEE Trans. Commun., vol. 53, pp 764-768, Nov. 2005.
[17] 謝佩恩,“以電腦搜尋之短非同調區塊碼”國立中央大學通訊工程研究所,碩士論文, 六月. 2011.
[18] R. Y. Wei, T. S. Lin and S. S. Gu, ‘‘Block-coded 16QAM for noncoherent decoding,’’ to appear in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Sydney, Apr. 2010.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2012-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明