博碩士論文 995205001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.230.154.160
姓名 歐嘉文(OU CHIA WEN)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 基因演算法運用於特徵挑選解決財務危機預測問題
(Using genetic algorithm for feature selection in financial distress problem)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 以元件式概念為基礎設計建立的XBRL示範性平台
★ 利用指定功能軌跡的滑鼠特徵分析以提升識別率★ 應用方位感測器之手機使用者識別機制
★ 基於加速度及方位感測器之智慧型手機動態動作識別機制★ 以組合專精型多分類器於財務危機預測之研究
★ 結合領域知識與機器運算之新的特徵選取方法: 應用於財務危機預警預測之問題★ 一種新的非侵入式識別機制使用駕駛者的上半身骨架角度:基於動態及直方圖方法
★ 基於方位感測器與觸控螢幕之智慧型手機非侵入式多模組識別機制★ 非侵入式多模組之手機使用者識別機制 :基於動態方法
★ 多分類器組合應用於財務危機預測★ 漸進式模型應用於財務危機預測問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 財務危機預測長久以來都是一個重要且常被廣泛討論的主題,發展出好的財務危機預警模型可以有效幫助,銀行決策。影響整個財務危機預警流程主要有兩個議題分別是特徵挑選(Feature selection)與分類器演算法(Classifier algorithm),過去研究顯示,單純改良分類器演算法,準確率很難有顯著的提升。本論文將目標放在另一個議題特徵挑選,我們觀察到財務比率數量會隨著年代大幅成長,如何在大量的財務比率下挑選出重要的財務比率,變成很重要的議題,近幾年,研究顯示基因演算法應用於特徵挑選在單一特定的資料集下表現相當好,我們知道特徵集合成長速度相當的快速,如果只驗證基因演算法在單一特定的特徵集合的效果是不足夠的,本論文模擬了特徵集合越來越大的情況,觀察基因演算法表現情形,最後觀察出基因演算法在不加入公司治理的特徵情況下,當特徵集合越來越大,基因演算法挑選出來的特徵組合,準確率還是能夠穩定成長而且較其他特徵挑選方法穩定。
摘要(英) Financial distress problem has been important and widely studied topic, development of good financial analysis model can help bank to decisions. There are two major factors, namely feature selection and classifier algorithm, influencing financial distressed prediction. Previous researches show that the forecasting accuracy is very difficult to have significant improvement by improving classification algorithm only; therefore, our research focus on the feature selection issue. Over time,we observed financial ratio growing quickly, that mean feature selection become more important, In recent years, Previous researches have shown genetic algorithm applied to feature selection in unique feature set have good performance, but we know feature size growing quickly, it is not enough to prove genetic algorithm in unique feature set. In our research, we simulate ratio growing situation, consider genetic algorithm performance. Finally, if we exclude corporate governance, we discover genetic algorithm predict performance become well when feature size larger.
關鍵字(中) ★ 特徵挑選
★ 財務危機預測
★ wrapper method
★ 基因演算法
關鍵字(英) ★ feature selection
★ financial distressed prediction
★ wrapper method
★ genetic algoritm
論文目次 目錄
中文摘要 iv
Abstract v
誌謝 vi
一、 緒論 1
1-1. 研究背景 1
1-2. 研究動機 3
1-3. 論文架構 4
二、 文獻探討 5
2-1 Financial crises and financial features 5
2-2 Feature selection 10
2-3 Genetic algorithms concept 12
2-4 Genetic algorithms parameter 13
2-5 Genetic algorithms apply in financial prediction review 15
三、 實驗設計 17
3-1 資料來源 17
3-2 資料前置處理 18
3-3 實驗假設 18
3-4 實驗流程 19
3-4-1 GA Wrapper 實驗設計 20
3-4-2 Stepwise Logistic Regression & Stepwise Discriminant Analysis實驗設計 24
3-4-3 Altman,Ohlson 專家實驗設計 25
四、 實驗結果 26
4-1 實驗結果與分析 26
五、 結論及未來展望 35
5-1 結論與未來展望 35
參考文獻 37
附錄一 40
附錄二 45
附錄三 49
參考文獻 參考文獻
[1] W. H. Beaver, "Financial ratios as predictors of failure," Journal of accounting research, vol. 4, pp. 71-111, 1966.
[2] E. I. Altman, "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy," The journal of finance, vol. 23, pp. 589-609, 1968.
[3] J. A. Ohlson, "Financial ratios and the probabilistic prediction of bankruptcy," Journal of accounting research, vol. 18, pp. 109-131, 1980.
[4] K. Y. Tam and M. Y. Kiang, "Managerial applications of neural networks: the case of bank failure predictions," Management science, vol. 38, pp. 926-947, 1992.
[5] M. O. E. Nur Ozkan-Gunay, "Prediction of bank failures in emerging financial markets: an ANN approach," Journal of Risk Finance, vol. 8, pp. 465 - 480, 2007.
[6] D. K. Chandra, V. Ravi, and I. Bose, "Failure prediction of dotcom companies using hybrid intelligent techniques," Expert Systems with Applications, vol. 36, pp. 4830-4837, 2009.
[7] L. H. Chen and H. D. Hsiao, "Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study," Expert Systems with Applications, vol. 35, pp. 1145-1155, 2008.
[8] Y. Ding, X. Song, and Y. Zen, "Forecasting financial condition of Chinese listed companies based on support vector machine," Expert Systems with Applications, vol. 34, pp. 3081-3089, 2008.
[9] Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang, "Predicting corporate financial distress based on integration of support vector machine and logistic regression," Expert Systems with Applications, vol. 33, pp. 434-440, 2007.
[10] K.-S. Shin, T. S. Lee, and H.-j. Kim, "An application of support vector machines in bankruptcy prediction model," Expert Systems with Applications, vol. 28, pp. 127-135, 2005.
[11] C.-H. Wu, G.-H. Tzeng, Y.-J. Goo, and W.-C. Fang, "A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy," Expert Systems with Applications, vol. 32, pp. 397-408, 2007.
[12] H. Jo and I. Han, "Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction," Expert Systems with Applications, vol. 11, pp. 415-422, 1996.
[13] H. Li and J. Sun, "Ranking-order case-based reasoning for financial distress prediction," Knowledge-Based Systems, vol. 21, pp. 868-878, 2008.
[14] S. Cho, J. Kim, and J. K. Bae, "An integrative model with subject weight based on neural network learning for bankruptcy prediction," Expert Systems with Applications, vol. 36, pp. 403-410, 2009.
[15] "台灣經濟新報. Available: http://www.tej.com.tw/twsite/."
[16] M. Blum, "Failing company discriminant analysis," Journal of Accounting Research, vol. 12, pp. 1-25, 1974.
[17] P. D. Chant, "On the predictability of corporate earnings per share behavior," The Journal of Finance, vol. 35, pp. 13-21, 1980.
[18] E. B. Deakin, "A discriminant analysis of predictors of business failure," Journal of Accounting Research, vol. 10, pp. 167-179, 1972.
[19] J. E. Ketz, "The effect of general price-level adjustments on the predictive ability of financial ratios," Journal of Accounting Research, vol. 16, pp. 273-284, 1978.
[20] C. Casey and N. Bartczak, "Using Operating Cash Flow Data to Predict Financial Distress: Some Extensions," Journal of Accounting Research, vol. 23, pp. 384-401, 1985.
[21] M. J. Gombola, M. E. Haskins, J. E. Ketz, and D. D. Williams, "Cash flow in bankruptcy prediction," Financial Management, vol. 16, pp. 55-65, 1987.
[22] C. H. Wu, G. H. Tzeng, Y. J. Goo, and W. C. Fang, "A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy," Expert Systems with Applications, vol. 32, pp. 397-408, 2007.
[23] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," The Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
[24] B. Back, T. Laitinen, and K. Sere, "Neural networks and genetic algorithms for bankruptcy predictions," Expert Systems with Applications, vol. 11, pp. 407-413, 1996.
[25] P. W. Huang and C. L. Liu, "Using genetic algorithms for feature selection in predicting financial distresses with support vector machines," in Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on, 2006, pp. 4892-4897.
[26] S. H. Min, J. Lee, and I. Han, "Hybrid genetic algorithms and support vector machines for bankruptcy prediction," Expert Systems with Applications, vol. 31, pp. 652-660, 2006.
[27] R. S. Sexton, R. S. Sriram, and H. Etheridge, "Improving Decision Effectiveness of Artificial Neural Networks: A Modified Genetic Algorithm Approach," Decision Sciences, vol. 34, pp. 421-442, 2003.
[28] "MBA智庫百科. Avaliable: http://wiki.mbalib.com/wiki/MBA."
[29] G. R. Iversen and H. Norpoth, Analysis of variance: Sage Publications, Inc, 1987.
[30] K. D. a. M. K, Logistic regression A self-learning text, 3 ed. New York Springer, 1994.
[31] J. Sun and H. Li, "Financial distress prediction based on serial combination of multiple classifiers," Expert Systems with Applications, vol. 36, pp. 8659-8666, 2009.
[32] A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artificial intelligence, vol. 97, pp. 245-271, 1997.
[33] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial intelligence, vol. 97, pp. 273-324, 1997.
[34] Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, pp. 2507-2517, 2007.
[35] H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," Knowledge and Data Engineering, IEEE Transactions on, vol. 17, pp. 491-502, 2005.
[36] J. Kittler, "Feature set search algorithms," Pattern recognition and signal processing, vol. 41, p. 60, 1978.
[37] J. H. Holland, Adaptation in natural and artificial systems: University of Michigan press, 1975.
[38] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," Computer, vol. 27, pp. 17-26, 1994.
[39] "公開觀測資訊站. Available: http://mops.twse.com.tw/mops/web/index."
[40] "Matlab ga tool box. Available: http://www.mathworks.com/help/toolbox/gads/gaoptimset.html."
[41] "SAS toolbox. Available: http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_logistic_sect052.htm."
[42] I. G. Dambolena and S. J. Khoury, "Ratio Stability and Corporate Failure," The Journal of Finance, vol. 35, pp. 1017-1026, 1980.
[43] K. Y. Tam and M. Y. Kiang, "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, vol. 38, pp. 926-947, 1992.
[44] E. I. Altman, R. G. Haldeman, and P. Narayanan, "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, vol. 1, pp. 29-54, 1977.
[45] M. Blum, "Failing Company Discriminant Analysis," Journal of Accounting Research, vol. 12, pp. 1-25, 1974.
[46] M. J. Gombola, M. E. Haskins Jr, E. Ketz, and D. D. Williams, "Cash Flow in Bankruptcy Prediction," Financial Management vol. 16, pp. 55-65, Winter87 1987.
[47] C. L. N. a. R. E. Smith, "A Comparison of General Price Level and Historical Cost Financial Statements in the Prediction of Bankruptcy," The Accounting Review, vol. 54, pp. 72-87, 1979.
[48] H. Li and J. Sun, "Business failure prediction using hybrid2 case-based reasoning (H2CBR)," Computers & Operations Research, vol. 37, pp. 137-151, 2010.

指導教授 梁德容 審核日期 2012-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明