博碩士論文 995302004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.15.10.164
姓名 沈宗億(Tsung-Yi Shen)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 車載虛擬交通號誌環境下 Green Wave 之研究
(Study of Green Wave in Virtual-Traffic-Light Environment through VANETs)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現今許多研究學者對於綠色智慧運輸系統 (Green Intelligent Transport Systems,Green ITS)的研究投入相當多的心力,希望藉由Green ITS推廣地球永續發展的理念,作為研究的重要指標。研究議題包括綠色智能交通、減少交通擁擠、降低污染、交通安全、輔助駕駛與節省建設維護費用等問題,提出了廣泛且深入的研究探討。有良好的交通控管十字路口的交通訊號能使車輛可以快速地通行,達到節約能源和提升能源利用,甚至減少溫室氣體的排放量,實現高效率且具有永續發展性的交通網絡。根據環境監測機構的調查,都市交通擁擠是造成汽油消耗和大量廢氣排放的重要“元凶",而汽車在停等紅綠燈時加速和反覆剎車減速的過程,所消耗油量是正常行駛的數倍至十幾倍,有害氣體的排放量也相對倍增,因此積極採取有效措施,保持都市交通通暢,對於交通號誌控制“Green Wave”來說顯得更加重要。
隨著科技發展、車輛能耗要求、道路使用需求日漸提高的趨勢下,全球在過去近三十年的時光裡,不遺餘力地發展智慧型運輸系統(Intelligent Transport System,ITS)與車載資通訊系統 (Telematics) 的各項先進技術及創新應用,產業結構也已十分完整,諸多技術與應用服務也已邁向綠能資通訊技術(Green Information and Communication Technology,Green ICT)等方向前進,進而內化為許多民眾日常的交通習慣,成為一種具備環保節能的下世代綠色生活價值。因此,本論文探討以車載無線網路技術建設的虛擬交通號誌,依據車輛數量及交通狀況需求,而動態調適性交通號誌的時間長度,在得知交通號誌的時間長度時,也能提供有經濟的行車速度以引導車輛快速經過更多十字路口,境而達到節約能源的效益。故Green wave速度引導(Green Wave Speed Guidance),可以依車輛數或交通現況需求運行Green wave,在每個路口做調適控制交通號誌,讓路口可以達最大的車流量。以實際的台北地圖符合多路口的交通狀況下為模擬地圖,最後模擬結果顯示,在速度的引導車輛運行及相位組合時,所有的路口都可提升31%的車流量,所有車輛平均車速也提升40.1%,可節約能源18.1%。在Green wave支援運作下,車流量更提升至46%,所有車輛平均車速也提升至47.2%,可節約能源39.1%。
摘要(英) Urban traffic congestion causes energy consumption and emissions. However, traditional traffic light is fixed time to change between green and red light. If traffic lights can dynamic change by traffic flow, drivers can go through a series of traffic lights with dynamic speed guidance over several intersections. Therefore, traffic management plays an important role in saving energy and improving vehicle speed. This study focuses on virtual traffic light and applies VANETs to support dynamic speed guidance to the drivers. Based on the speed information, we can achieve the goal of Green Wave so that energy consumption and emission reduction are minimized. Detailed are discussed the algorithm of green wave speed guidance and simulate in Taipei city.
This study develops a green wave speed guidance strategy for virtual traffic light. As a traditional green wave speed guidance, any vehicle travels along with fixed speed. However, in the process of operation, the optimal speed advice to vehicle should take into consideration the current traffic conditions, road grade, etc. In this study, we presented an adjustable speed strategy based on a bi-directional intersection. According to traffic flow and the type of vehicles in the intersection decide dynamic speed guidance. Using VTL with V2V communication generates traffic signal “online” by vehicles. The dynamic speed control in virtual traffic light guides vehicle on the best running speed to go through serial intersections without stopping. Thus, green wave coordinated control reduces stop-and-go traffic and control signal to achieves real-time traffic smooth.
As a case of study, the main road in Taipei is taken for simulation and evaluation in virtual traffic light. The simulation results compared with fixed signal show that, the performance of vehicle speed increased by about 47.2%. On the other hand, the improvement of throughput-to-volume increased by about 46%. As for the energy savings for vehicles with green wave speed guidance are found to be 39.1%.
關鍵字(中) ★ 車載網路
★ 虛擬交通號誌
★ 綠色智慧運輸系統
★ 速度引導
★ 速度建議
關鍵字(英) ★ VANETs
★ Virtual Traffic Light
★ Green Wave
★ Green ITS
★ Speed Guidance
★ Speed Advice
論文目次 目錄
摘要 I
Abstract III
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
1. 緒論 1
1.1. 概要 1
1.2. 研究動機 2
1.3. 研究目的 3
1.4. 論文架構 4
2. 背景智識及相關研究 5
2.1. 綠色智慧運輸系統 5
2.2. 車載網路 7
2.3. 調適性交通訊號控制 10
2.4. 多目標強化學習交通訊號控制運用VANETS 11
2.5. 多十字路口交通訊號時間安排最佳化 13
2.6. 依交通號誌狀況規劃主幹道的車速 13
2.7. 都市交通號誌控制 14
2.8. 調適性虛擬交通號誌 15
2.9. GREEN WAVE速度引導 17
2.10. 動態速度動態信號策略於主幹道交通管理 18
2.11. 相關文獻比較 19
3. Green Wave速度的引導 21
3.1. 機制假設 21
3.2. 解決十字路口衝突點與相位組合 22
3.2.1 交通號誌相位組合演算法 28
3.2.2 交通號誌相位之範例 32
3.2.3 相位轉變FSM 33
3.3. VTL的建立與運作 35
3.3.1. 封包訊息與資訊格式 36
3.3.2. VTL運作機制 38
3.3.3. VTL週期時間計算 42
3.4. 虛擬交通號誌應用GREEN WAVE速度引導 44
3.5. 車輛耗用能源 50
3.6. 行人通行之考量 52
3.7. 闖紅燈之危險駕駛 52
3.8. 發生事故之協調交通號誌 53
3.9. VTL通行記錄的保存 54
4. 模擬結果 56
4.1. 實驗環境設定 57
4.2. 實驗參數與測量指標 60
4.3. 實驗一:各交通號誌機制之實驗 63
4.4. 實驗二:考量VTL的行人通行之影響 68
4.5. 實驗三:考量2%之車輛不遵守交通號誌之影響 72
4.6. 實驗四:考量VTL的行人通行與2%之車輛不遵守交通號誌之影響 76
4.7. 實驗五:考量60秒行人通行時間在VTL機制之影響 80
4.8. 實驗六:考量5%之車輛,不遵守交通號誌之影響 85
4.9. 實驗七:擴大地圖模擬範圍 89
5. 結論與未來工作 94
5.1. 結論 94
5.2. 未來工作 95
參考文獻 97
參考文獻 [1] Green Intelligent Transportation Systems (Green ITS). Available: http://www.greenits.ca
[2] eCoMove (ERTICO-ITS Europe). Available: http://ecomove-project.eu
[3] J.-H. Tseng, "Adaptive Virtual Traffic Light Based on VANETs for Mitigating Congestion in Smart City," ed: NCU.
[4] O. K. Tonguz, "Biologically inspired solutions to fundamental transportation problems," Communications Magazine, IEEE, vol. 49, pp. 106-115, 2011.
[5] M. Ferreira, R. Fernandes, H. Concei, W. Viriyasitavat, and O. K. Tonguz, "Self-organized traffic control," presented at the Proceedings of the seventh ACM international workshop on VehiculAr InterNETworking, Chicago, Illinois, USA, 2010.
[6] T. Tielert, M. Killat, H. Hartenstein, R. Luz, S. Hausberger, and T. Benz, "The impact of traffic-light-to-vehicle communication on fuel consumption and emissions," in Internet of Things (IOT), 2010, 2010, pp. 1-8.
[7] U.S. DoT — Inst. Transportation Engs. Traffic Signals Issue Brief 5. Available: http://safety.fhwa.dot.gov/intersection/resources/fhwasa10005/brief_5.cfm
[8] DOT — Federal Highway Administration. Available: ops.fhwa.dot.gov
[9] "Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems — 5GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications," ed: ASTM E2213-03, Aug 2003
[10] Dedicated Short Range Communications (DSRC). Available: http://www.leearmstrong.com/Dsrc/DSRCHomeset.htm
[11] "IEEE Draft Guide for Wireless Access in Vehicular Environments (WAVE) - Architecture," IEEE P1609.0/D5, September 2012, pp. 1-74, 2012.
[12] "Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Resource Manager," IEEE Std 1609.1-2006, pp. 1-71, 2006.
[13] "IEEE Draft Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages," IEEE P1609.2/D16, August 2012, pp. 1-287, 2012.
[14] "IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services," IEEE Std 1609.3-2010 (Revision of IEEE Std 1609.3-2007), pp. 1-144, 2010.
[15] "IEEE Standard for Wireless Access in Vehicular Environments (WAVE)--Multi-channel Operation," IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006), pp. 1-89, 2011.
[16] "IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-- Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS)," IEEE Std 1609.11-2010, pp. 1-62, 2011.
[17] M. Amadeo, C. Campolo, and A. Molinaro, "Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs," Ad Hoc Networks, vol. 10, pp. 253-269, 3// 2012.
[18] "IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments," IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), pp. 1-51, 2010.
[19] Y. L. Morgan, "Managing DSRC and WAVE Standards Operations in a V2V Scenario," International Journal of Vehicular Technology, vol. 2010, 2010.
[20] P. Belanovic, D. Valerio, A. Paier, T. Zemen, F. Ricciato, and C. F. Mecklenbrauker, "On Wireless Links for Vehicle-to-Infrastructure Communications," Vehicular Technology, IEEE Transactions on, vol. 59, pp. 269-282, 2010.
[21] K. Abboud and Z. Weihua, "Modeling and Analysis for Emergency Messaging Delay in Vehicular Ad Hoc Networks," in Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 2009, pp. 1-6.
[22] Z. Binbin, C. Jiannong, Z. Xiaoqin, and W. Hejun, "Adaptive Traffic Light Control in Wireless Sensor Network-Based Intelligent Transportation System," in Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, 2010, pp. 1-5.
[23] Z. Binbin, C. Jiannong, and W. Hejun, "Adaptive Traffic Light Control of Multiple Intersections in WSN-Based ITS," in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, 2011, pp. 1-5.
[24] D. Houli, L. Zhiheng, and Z. Yi, "Multiobjective reinforcement learning for traffic signal control using vehicular ad hoc network," EURASIP J. Adv. Signal Process, vol. 2010, pp. 1-7, 2010.
[25] Y. K. Chin, K. C. Yong, N. Bolong, S. S. Yang, and K. T. K. Teo, "Multiple intersections traffic signal timing optimization with genetic algorithm," in Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on, 2011, pp. 454-459.
[26] S. Mandava, K. Boriboonsomsin, and M. Barth, "Arterial velocity planning based on traffic signal information under light traffic conditions," in Intelligent Transportation Systems, 2009. ITSC ’09. 12th International IEEE Conference on, 2009, pp. 1-6.
[27] P. G. Balaji, X. German, and D. Srinivasan, "Urban traffic signal control using reinforcement learning agents," Intelligent Transport Systems, IET, vol. 4, pp. 177-188, 2010.
[28] M. Ferreira and P. M. d’Orey, "On the Impact of Virtual Traffic Lights on Carbon Emissions Mitigation," Intelligent Transportation Systems, IEEE Transactions on, vol. 13, pp. 284-295, 2012.
[29] A. W.-J. L.-R. M. Jørgensen, "Green Wave Traffic Optimization - A Survey," 2008.
[30] B. D. Coensel, A. Can, B. Degraeuwe, I. D. Vlieger, and D. Botteldooren, "Effects of traffic signal coordination on noise and air pollutant emissions," Environ. Model. Softw., vol. 35, pp. 74-83, 2012.
[31] C. Shenyang, S. Jian, and Y. Jing, "Development and simulation application of a dynamic speed dynamic signal strategy for arterial traffic management," in Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on, 2011, pp. 1349-1354.
[32] Nationwide Differential GPS System (NDGPS). Available: http://www.gps.gov/systems/augmentations
[33] Z. Guohui and W. Yinhai, "Optimizing Minimum and Maximum Green Time Settings for Traffic Actuated Control at Isolated Intersections," Intelligent Transportation Systems, IEEE Transactions on, vol. 12, pp. 164-173, 2011.
[34] M. Kimura, S. Inoue, Y. Kakuda, and T. Dohi, "A Route Discovery Method for Alleviating Traffic Congestion Based on VANETs in Urban Transportations Considering a Relation between Vehicle Density and Average Velocity," in Autonomous Decentralized Systems (ISADS), 2011 10th International Symposium on, 2011, pp. 299-302.
[35] M. Camara, B. Dakyo, and H. Gualous, "Polynomial Control Method of DC/DC Converters for DC-Bus Voltage and Currents Management - Battery and Supercapacitors," Power Electronics, IEEE Transactions on, vol. 27, pp. 1455-1467, 2012.
[36] W. Lei, E. G. Collins, and L. Hui, "Optimal Design and Real-Time Control for Energy Management in Electric Vehicles," Vehicular Technology, IEEE Transactions on, vol. 60, pp. 1419-1429, 2011.
[37] L. Hoehmann and A. Kummert, "Car2X-communication for vision-based object detection," in Software, Telecommunications and Computer Networks (SoftCOM), 2010 International Conference on, 2010, pp. 290-294.
[38] FHWA-HOP-08-024, "Traffic Signal Timing Manual ", ed. FHWA, June 2008
[39] FHWA-HRT-04-091, "Signalized Intersections: Informational Guide," ed. FHWA, August 2004
[40] Greenshield’s Model. Available: http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/theoryandconcepts/GreenshieldsModel.htm
[41] X. Qin and A. M. Khan, "Control strategies of traffic signal timing transition for emergency vehicle preemption," Transportation Research Part C: Emerging Technologies, vol. 25, pp. 1-17, 12// 2012.
[42] Multi-Agent Transport Simulation. Available: http://matsim.org/
[43] F.-B. Lin and P.-Y. Tsueng, "Highway Capacity Manual in Taiwan," ed. Institute of Transportation, MOTC, 2011.
指導教授 周立德(Li-Der Chou) 審核日期 2013-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明