博碩士論文 995401016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.142.156.97
姓名 林大業(Ta-Yeh Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 毫米波晶片天線設計
(Millimeter-Wave On-Chip Antenna Design)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本博士論文主要藉由整合被動元件基板(IPD)平台進行相關毫米波晶片天線的研究與設計,論文第一部分的重點是利用CMOS / IPD覆晶組裝現有的空腔結構來產生天線輻射機制。在第二章中,介紹一種應用於毫米波頻段的雙頻晶片天線,所提出的天線架構主要是由槽線和覆晶空腔組成,並藉由兩個微帶線開路殘段透過C型槽線耦合以實現雙頻特性,由CMOS晶片與IPD基板所形成覆晶空腔其內部為空氣介質,可以減少損耗並提高天線增益。天線反射係數、輻射場形和天線增益均完成設計驗證與量測比對。根據量測結果顯示,此天線可以雙頻操作於V頻段和E頻段,量測的反射係數(小於-10 dB)其阻抗頻寬分別為6.1%和5.8%,量測的增益在58 GHz與77 GHz分別為-2 dBi與0.3 dBi。所提出的天線非常適合雙頻毫米波高速數據無線通信系統。
論文的第二部分著重於使用傳統封裝的打線結構來當作天線輻射體並整合實現於IPD製程的功率分波器來完成毫米波圓極化天線設計。在第三章中,介紹了一種V頻段寬波束寬度左旋圓極化打線天線。天線的主要架構是由一個1對4串聯型環形功率分波器和4條環形圍繞的打線結構組成,具有寬波束寬度的特性。並詳細說明功率分波器的設計方法,整體天線的面積為2.2 x 2.2 。天線反射係數、輻射場形和天線增益均完成設計驗證與量測比對。根據量測結果顯示,天線可以操作於V頻段,量測的反射係數(小於-10 dB)其阻抗頻寬從51GHz到67GHz以上(> 28%),量測的天線增益在58 GHz時為-0.8 dBi,量測的AR從55 GHz至65 GHz 均小於3 dB,模擬的3 dB天線波束寬度大於180度。
論文的最後一部分重點是介紹使用打線結構進行饋入耦合的毫米波IPD介質天線設計。在第四章中,提出一使用打線結構饋入的V頻段晶片級雙偏極化介質天線,方形介質共振體是以現有的IPD製程矽基板來實現,並由兩條相互垂直的打線結構耦合饋入,各自激發相互正交的兩個簡併模,此外本身的打線結構共振頻率也增強整體的天線頻寬。量測的天線頻寬從52.8 GHz至65 GHz。量測的隔離度在頻寬範圍下均大於20 dB。量測的天線增益在60 GHz時為4.5 dBi。所提出的設計可以提供用於圓極化系統的進一步應用。
最後,概括本論文所提出之研究成果,以及未來可研究內容於第五章。
摘要(英) In this dissertation, three type millimeter-wave on-chip antennas based on Integrated Passive Device (IPD) technology are presented. The first part of the dissertation focuses on using CMOS/IPD flip-chip cavity to achieve dual-band operation. In Chapter II, a dual-band antenna-in-package for millimeter-wave applications is presented. The proposed antenna, which consists of a radiating slot and an air-filled cavity, is fed by a microstrip loaded with two tuning open-circuited stubs through a coupling C-shape aperture to achieve dual-band characteristics. The air-filled cavity, which is formed by the space between CMOS chip and IPD substrate after flip-chip assembly process, can reduce loss and improve antenna gain. Simulation and measurement regarding antenna reflection coefficient, radiation pattern, and peak gain are conducted for design validation. The measured results show that the antenna can operate in V-band and E-band, and the impedance bandwidths with the reflection coefficient less than -10 dB are 6.1 % and 5.8 %, respectively. The measured gains are -2 dBi at 58 GHz and 0.3 dBi at 77 GHz, respectively. The proposed antenna is well suited for dual-band millimeter-wave high data rate wireless communication systems.
The second part of the dissertation focuses on millimeter-wave circularly polarization antenna designs using bond-wire radiators. In Chapter III, a V-band wide-beamwidth left-handed circularly polarized wire-bond antenna is presented. The proposed design, which is implemented by using Integrated Passive Device (IPD) process, consists of a 1-to-4 series-type ring-shape microstrip power divider and four bond-wire radiators. The design of bond-wire radiator with wide-beamwidth characteristic is described. The design method of power divider is also explained in details. The proposed antenna has been fabricated and measured. The area of the fabricated antenna is of 2.2 x 2.2 . The simulation and measurement regarding antenna reflection coefficient, radiation pattern, peak gain, and axial ratio are conducted for design validation. The measured results show that the antenna can operate in V-band and the impedance bandwidth with less than -10 dB is from 51 GHz to 67 GHz or more ( > 28% ). The measured peak gain is -0.8 dBi at 58 GHz. The measured axial ratio is less than 3 dB from 55 GHz to 65 GHz. The simulated 3-dB antenna beamwidth is more than 180 degrees.
The last part of the dissertation focuses on millimeter-wave IPD dielectric resonator antenna design using bond-wire feeding structures. In Chapter IV, a V-band chip-level dual-polarized dielectric resonator antenna (DRA) implemented by using bondwires and silicon-based integrated passive device (IPD) technology is proposed. The square-shaped resonator is fed by two bondwire coupling structures which excite two degenerate modes orthogonal to each other. The resonance of bondwire itself is also found to enhance the antenna bandwidth to cover the 60-GHz band. Reasonable agreement between the simulation and measurement is obtained. The measured antenna bandwidth is from 52.8 GHz to 65 GHz. The measured isolation is better than 20 dB at frequencies of interest. The measured antenna gain is 4.5 dBi at 60 GHz. The proposed design can provide further applications for circularly polarized systems.
Finally, a summary of the research results and future work are concluded in Chapter V.
關鍵字(中) ★ 毫米波
★ 晶片天線
關鍵字(英) ★ Millimeter-Wave
★ On-Chip Antenna
論文目次 摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
I. INTRODUCTION 1
1.1 Motivation and Application 1
1.2 Literature Survey 2
1.3 Organization of the Dissertation 3
II. DESIGN OF DUAL-BAND MILLIMETER-WAVE ANTENNA-IN-PACKAGE USING FLIP CHIP ASSEMBLY 6
2.1 Introduction 6
2.2 Antenna Design and Analysis 8
2.2.1 Antenna Design 8
2.2.2 Antenna Fabrication 12
2.3 Simulation and Measurement Results 12
2.4 Conclusion 20
III. DESIGN OF V-BAND WIDE-BEAMWIDTH CIRCULARLY POLARIZED WIRE-BOND ANTENNA 22
3.1 Introduction 22
3.2 Design Analysis 24
3.2.1 Power Divider Design 24
3.2.2 Radiator Design 26
3.3 Measurement Results 31
3.4 Conclusion 37
IV. V-BAND DUAL-POLARIZED DIELECTRIC RESONATOR ANTENNA WITH BONDWIRE FEEDING STRUCTURES 38
4.1 Introduction 38
4.2 Dielectric Resonator Antenna Design 40
4.3 Measurement Results 44
4.4 Conclusion 45
V. CONCLUSION AND FUTURE WORKS 47
BIBLIOGRAPHY 49
PUBLICATION LIST 54

參考文獻 [1] R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41-50, Sept. 2007.
[2] J. Wells, “Multigigabit Wireless technology at 70 GHz, 80 GHz and 90 GHz,” RF design Magazine, pp. 50-58, May 2006.
[3] M Henry, C.E. Free, B.S. Izqueirdo, J.C. Batchelor, and P. Young, "Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis," IEEE Trans. Components and Packaging Technologies, vol. 32, no. 1, pp. 93-100, Feb. 2009.
[4] J. Grzyb and G. Troster, "MM-wave microstrip patch and slot antennas on low cost large area panel MCM-D substrates-a feasibility and performance study, " IEEE Trans. Components and Packaging Technologies, vol. 25, no. 3, pp. 379-408, Aug. 2002.
[5] H.Chu, Y.-X. Guo, T.-G. Lim, Y.- M. Khoo, and X. Shi, "135-GHz Micromachined On-Chip Antenna and Antenna Array," IEEE Trans. Antenna and Propagation Technologies, vol. 60, no. 10, pp. 4582-4588, Oct. 2012.
[6] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18um CMOS technology,” IEEE Electron Devices Lett., vol. 29, no. 6, pp. 625-627, June 2008.
[7] C.-C. Lin, S.-S. Hsu, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz millimeter-wave CMOS RFIC-on-chip triangular monopole antenna for WPAN applications,” IEEE Antennas and Propagation Society International Symposium, 2007, pp. 2522-2525, June 2007.
[8] A. Fontanelli, “System-in-Package technology : opportunities and challenges,” 9th International Symposium on Quality Electronic Design, pp. 589-593, 2008.
[9] T.-J. Ridgers, C. Boucey, J.-P. Frambach, L.-R. du Roscoat, and P. Gamand, “Challenges in integrating embedded RF within a SOC,” IEEE Radio and Wireless Symposium, 2008, pp. 547-550, 2008.
[10] Y.-C. Hsu, H.-K. Chiou, H.-K. Chen, T.-Y. Lin, D.-C. Chang, and Y.-Z. Juang, “Low phase noise and low power consumption VCO using CMOS and IPD technologies,” IEEE Trans. Components, Packaging and Manufacturing Technologies, vol. 1, no. 5, pp. 673-681, May 2011.
[11] H.-C. Lu, C.-C. Kuo, P.-A. Lin, C.-F. Tai, Y.-L. Chang, Y.-S. Jiang, J.-H. Tsai, Y.-M. Hsin, and H. Wang, “Flip-chip-assembled W-band CMOS chip modules on ceramic integrated passive device with transition compensation for millimeter-wave system-in-package integration,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, March 2012.
[12] L. Liu, S. M. Kuo, J. Abrokwah, M. Ray, D. Maurer, M. Miller, "Compact harmonic filter design and fabrication using IPD technology," IEEE Trans. Components and Packaging Technologies, vol. 30, no. 4, pp. 556-562, Dec. 2007.
[13] Advanced Furnace Systems Corp. (2006). Introduction of Integrated Passive Device (IPD) Process, Available: http://www.afsc.com.tw/sol02.html.
[14] Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, and H.-R. Chuang, “A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology,” Asia-Pacific Microwave Conference 2011, pp. 449-452, 2011.
[15] H.-R. Chuang, L.-K. Yeh, P.-C. Kuo, K.-H. Tsai, and H.-L. Yue, “A 60-GHz Millimeter-Wave CMOS Integrated On-chip Antenna and Bandpass Filter,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1837-1845, July 2011.
[16] Y. Zhang, M. Sun, and L. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, July 2005.
[17] Y. Liu, Z. Shen, and C.-L. Law, “A compact dual-band cavity-backed slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 4-6, 2006.
[18] S. Hu, Y.-Z. Xiong, L. Wang, R. Li, J. Shi, and T.-G. Lim, “Compact high-gain mmWave antenna for TSV-based system-in-package application,” IEEE Trans. Components, Packaging and Manufacturing Technologies, vol. 2, no. 5, pp. 841-846, May 2012.
[19] D. M. Pozar, Microwave Engineering, John Wiley & Sons, Inc.
[20] S.-C. Choi, I.-H. Chi, J.-G. Jin, and K.-S. Bok, “A study about solder bumping process by using the electro-plating method,” International Symposium on Electronic Materials and Packaging, 2001, pp. 170-177, 2001.
[21] R. N. Simionsand R. Q. Lee, “On-wafer characterization of millimeter wave antennas for wireless application,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92–96, Jan. 1999
[22] H. T. Friis, “A Note on a Simple Transmission Formula,” Proc. IRE, Vol 34, no 5, pp. 254-256, May 1946.
[23] C. Liu, Y.-X. Guo, X. Bao, and S.-Q. Xiao, “60-GHz LTCC integrated circularly polarized helical antenna array,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1329-1335, Mar. 2012.
[24] H. Sun, Y.-X. Guo, and Z. Wang, “60-GHz circularly polarized U-slot patch antenna array on LTCC,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 430–435, Jan. 2013.
[25] Q.-X. Chu, W. Lin, W.-X. Lin, and Z.-K. Pan, “Assembled dual-band broadband quadrifilar helix antennas with compact power divider networks for CNSS application,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 516-523, Feb. 2013.
[26] X. Bai, J. Tang, X. Liang, J. Geng, and R. Jin, “Compact design of triple-band circularly polarized quadrifilar helix antennas,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 380–383, 2014.
[27] I. Ndip, A. Oz, C. Tschoban, S. Guttowski, H. Reichl, K. -D. Lang, and H. Henke, “Modelling the shape, length and radiation characteristics of bond wire antennas,” IET Microwave, Antennas and Propagation, vol. 6, iss. 10, pp. 1187–1194, 2012.
[28] U. Johannsen and A. B. Smolders, “On the yield of millimeter-wave bond-wire-antennas in high volume production,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4363-4366, Aug. 2013.
[29] R Willmot, Dowon Kim, and D Peroulis, “A yagi–uda array of high-efficiency wire-bond antennas for on-chip radio applications,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 3315–3321, 2009.
[30] Y. Ma, K. Kawasaki, and H. Masuda, “A wideband bond-wire Antenna for millimeter wave intra-communication systems,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4839-4843, Sep. 2013.
[31] B. P. Kumar, M. Kumar, C. Kumar, S. Kumar, and V. V. Srinvasan, “Integrated quadrifilar Helix at C-band for spacecraft omni antenna system,” in Proc. IEEE Applied Electromagnetics Conf., 2011.
[32] JEDEC Solid State Technology Association. Introduction of bondwire four-point standard. [Online]. Available: https://www.jedec.org/
[33] M. Spirito, F. M. De Paola, L. K. Nanver, E. Valletta, B. Rong, B. Rejaei, L. C. N. de Vreede, and J. N. Burghartz, “Surface-passivated high-resistivity silicon as a true microwave substrate,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2340–2347, Jul. 2005.
[34] National Applied Research Laboratories, Chip Implementation Center. [Online]. Available: http://www.cic.narl.org.tw/main.jsp
[35] H. T. Friis, “A Note on a Simple Transmission Formula,” Proc. IRE, Vol 34, no 5, pp. 254-256, May 1946.
[36] H. Tang, J.-X. Chen, W.-W. Yang, L.-H. Zhou, and W. Li, “Differential Dual-Band Dual-Polarized Dielectric Resonator Antenna”, IEEE Trans. Antennas and Propagation, vol. 65, no. 2, pp. 855-860, Feb. 2017.
[37] X. S. Fang, and K. W. Leung, “Designs of Single-, Dual-, Wide-Band Rectangular”, IEEE Trans. Antennas and Propagation , vol. 69, no. 6, pp. 2409-2414, June 2011.
[38] D. Hou, Y.-Z. Xiong, W.-L. Goh, S. Hu, W. Hong, and M. Madihian, “130-GHz On-Chip Meander Slot Antennas with Stacked Dielectric Resonators in Standard CMOS technology”, IEEE Trans. Antennas and Propagation, vol. 60, no. 9, pp. 4102-4109, Sep. 2012.
[39] U. Johannsen, and A. B. Smolders, “On the yield of millimeter-wave bond-wire-antennas in high volume production”, IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4363-4366, Aug. 2013.
[40] http://www.ansys.com/products/electronics/ansys-hfss
[41] T.-Y. Lin, T. Chiu, Y.-C. Chang, C.-P. Hsieh, and D.-C. Chang, “Design of 60-GHz dual-polarization dielectric resonator antenna”, 46th European Microwave Conference (EuMC) , pp. 1267-1270, 2016.
[42] P. V. Bijumon, Y. Antar, A. P. Freundorfer, and M. Sayer, “Dielectric resonator antenna on silicon substrate for system on-chip applications”, IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3404–3410, Nov. 2008.
指導教授 丘增杰(Tsenchieh Chiu) 審核日期 2018-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明