博碩士論文 995402014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.226.251.81
姓名 洪宗湧(Tsung-yung Hung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用
(Novel Local Pattern Descriptors via Dynamic Linear Decision Function for Face Recognition)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)★ 利用掌紋作個人身份之確認
★ 利用色彩統計與鏡頭運鏡方式作視訊索引★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類
★ 筆劃特徵用於離線中文字的辨認★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在近期人臉辨識系統的相關研究中,注重人臉的表示式,並發掘多種方法去解析人臉在表情與光線變化影響下仍可取得的穩定特徵。其中一種便是區域二元圖樣,其特性包含運算簡單且有穩健的區域紋理特徵,本論文提出的區域紋理特徵便是經由動態線性決策函數,以延伸區域二元圖樣至以向量和以方向純量為基礎的區域紋理特徵,並應用於人臉辨識。首先是區域向量特徵,其提供新的向量表示式與編碼方式(比較空間轉換),以產生更具有鑑別力的區域紋理特徵。接著是區域方向分類特徵,其利用額外的鄰邊向素以產生八個方向的邊之權重值,再取其極大值與極小值的方式進行編碼。以上所提出的方法皆經實作,並利用FERET,CAS-PEAL,CMU-PIE,Extend Yale B及LFW資料庫,比較區域二元圖樣和現今已有的區域紋理特徵方法。實驗結果證明本論文所提出來的方法,不論是在灰階影像或賈伯特徵,皆優於其他比較的方法。
摘要(英) Recently, the research in face recognition has been focused on developing a face representation that is designed to generate invariant features for solving facial illumination and expression. Motivated by a simple but powerful local pattern descriptor, Local Binary Pattern (LBP), two novel local pattern descriptors are proposed to extend the LBP to vector-based and directional-based local pattern descriptors via dynamic linear decision function for face recognition. The first descriptor, namely, Local Vector Pattern (LVP), provides a novel vector representation and a coding scheme Comparative Space Transform (CST), which are used to generate more detailed discriminative local features than the other methods. The second proposed descriptor, namely, Local Directional Classifier Pattern (LDCP), computes eight edge response values from extra neighborhood pixels, and these values are used to select the upper and lower bound indices for generating robust complete binary codes. These methods are implemented and compared with existing LBP face recognition systems and other state-of-art local pattern descriptors on FERET, CAS-PEAL, CMU-PIE, Extend Yale B, and LFW databases. Experimental results demonstrate that the proposed methods outperform the other comparative methods with grayscale images and Gabor features as inputs.
關鍵字(中) ★ 區域紋理特徵
★ 區域向量特徵
★ 區域方向分類特徵
★ 動態線性決策函數
★ 比較空間轉換
★ 人臉辨識
關鍵字(英) ★ Local Pattern Descriptors
★ Local Vector Pattern
★ Local Directional Classifier Pattern
★ Dynamic Linear Decision Function
★ Comparative Space Transform
★ Face Recognition
論文目次 Contents   v
List of Figures   viii
List of Tables   xv
1 Introduction   1
1.1 Challenges of Face Recognition   1
1.2 Contributions   2
1.3 Organization of Dissertation   2
2 Local Pattern Descriptor   4
2.1 Local Binary Pattern   4
2.2 Local Derivative Pattern   6
2.3 Local Tetra Pattern   7
2.4 Local Directional Pattern   12
2.5 Local Directional Number Pattern   13
3 Local Vector Pattern in High-Order Derivative Space   16
3.1 Introduction   17
3.2 The Proposed Local Pattern Descriptor   19
3.2.1 Local Vector Pattern   20
3.2.2 Coding Scheme - Comparative Space Transform   23
3.2.3 Measurement of Similarity   29
3.3 Extending Local Vector Pattern to High-Order Derivative Space   31
3.4 Summary   39
4 Local Directional Classifier Pattern Using Prominent Indices   40
4.1 Introduction   41
4.2 Local Directional Classifier Pattern   42
4.2.1 Coding Scheme   43
4.2.2 Compass Masks   45
4.2.3 Face Descriptor   46
4.3 Summary   46
5 Results and Discussions   48
5.1 Local Vector Pattern in High-Order Derivative Space   48
5.1.1 Experimental Results on FERET Database   49
5.1.2 Experimental Results on CAS-PEAL Database   58
5.1.3 Experimental Results on CMU-PIE Database   61
5.1.4 Experimental Results on Extended Yale B Database   63
5.1.5 Experimental Results on LFW Database   65
5.2 Local Directional Classifier Pattern Using Prominent Indices   68
5.2.1 Experimental Results on FERET Database   69
5.2.2 Experimental Results on CAS-PEAL Database   72
5.2.3 Experimental Results on CMU-PIE Database   74
5.2.4 Experimental Results on Extended Yale B Database   75
5.2.5 Experimental Results on LFW Database   76
6 Conclusions and Future Works   78
6.1 Summary and Contributions   78
6.2 Future Works   78
References   80
參考文獻 [1] T. Ojala, M. Pietik¨ainen, and T. M¨aenp¨a¨a, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
[2] T. Ahonen, A. Hadid, and M. Pietik¨ainen, “Face description with local binary patterns:
Application to face recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
[3] B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local binary
pattern: Face recognition with higher-order local pattern descriptor,” IEEE Trans.
Image Process., vol. 19, no. 2, pp. 533-544, Feb. 2010.
[4] S. Murala, R. P. Maheshwari, and R. Balasubramanian, “Local tetra patterns: a new
feature descriptor for content-based image retrieval,” IEEE Trans. Image Process.,
vol. 21, no. 5, pp. 2874-2886, May 2012.
[5] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pattern
operator for texture classification,” IEEE Trans. Image Process., vol. 19, no. 6, pp.
1657-1663, Jun. 2010.
[6] S. Zhao, Y. Gao, and B. Zhang, “Sobel-LBP,” in Proc. Int. Conf. Image Process.,
2008, pp. 2144-2147.
[7] R. Mattivi and L. Shao, “Human action recognition using LBPTOP as sparse spatiotemporal
feature descriptor,” in Proc. Int. Conf. Comput. Anal. Image Pattern, 2009,
pp. 740-747.
[8] T. Jabid, M. H. Kabir, and O. Chae, “Local directional pattern (LDP) for face
recognition,” in Proc. IEEE Int. Conf. Consum. Electron., Mar. 2010, pp. 329-330.
[9] T. Jabid, M. H. Kabir, and O. Chae, “Robust facial expression recognition based on
local directional pattern,” ETRI J., vol. 32, no. 5, pp. 784-794, 2010.
[10] W. K. Pratt, Digital Image Processing, Wiley, New York, 1978.
[11] R. Rivera, J. R. Castillo, and O. Chae, “Local directional number pattern for face
analysis: face and expression recognition,” IEEE Trans. Image Process., vol. 22, no.
5, pp. 1740-1752, May 2013.
[12] X. Xie and K.-M. Lam, “Gabor-based kernel PCA with doubly nonlinear mapping
for face recognition with a single face image,” IEEE Trans. Image Process., vol. 15,
no. 9, pp. 2481-2492, Sep. 2006.
[13] X. Chai, S. Shan, X. Chen, and W. Gao, “Locally linear regression for pose-invariant
face recognition,” IEEE Trans. Image Process., vol. 16, no. 7, pp. 1716-1725, Jul.
2007.
[14] W.-P. Choi, S.-H. Tse, K.-W. Wong, and K.-M. Lam, “Simplied Gabor wavelets for
human face recognition,” Pattern Recognit., vol. 41, no. 3, pp. 1186-1199, Mar. 2008.
[15] J. Y. Choi, K. N. Plataniotis, and Y. M. Ro, “Facee feature weighted fusion based
on fuzzy membership degree for video face recognition,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 4, pp. 1270-1282, Aug. 2012.
[16] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A
literature survey,” ACM Comput. Surv., vol. 35, no. 4, pp. 399-459, 2003.
[17] J. Y. Choi, Y. M. Ro, and K. N. Plataniotis, “A comparative study of preprocessing
mismatch effects in color image based face recognition,” Pattern Recognit., vol. 44,
no. 2, pp. 412-430, 2011.
[18] J. Y. Choi, Y. M. Ro, and K. N. Plataniotis, “Boosting color feature selection for
color face recognition,” IEEE Trans. Image Process., vol. 20, no. 5, pp. 1425-1434,
May 2011.
[19] J. Y. Choi, Y. M. Ro, and K. N. Plataniotis, “Color local texture features for color
face recognition,” IEEE Trans. Image Process., vol. 21, no. 3, pp. 1366-1380, Mar.
2012.
[20] M. Yang, L. Zhang, S. C. K. Shiu, and D. Zhang, “ Monogenic binary coding: an
efficient local feature extraction approach to face recognition,” IEEE Trans. Inf.
Forensic Security, vol. 7, no. 6, pp. 1738-1751, Dec. 2012.
[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci., vol. 3,
no. 1, pp. 71-86, 1991.
[22] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces:
Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.
[23] X. He, S. Yan, Y. Ho, P. Niyogi, and H.J. Zhang, “Face recognition using laplacianfaces,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 328-340, Mar.
2005.
[24] D. Cai, X. He, J. Han, and H. Zhang, “Orthogonal laplacianfaces for face recognition,”
IEEE Trans. Image Process., vol. 15, no. 11, pp. 3608-3614, Nov. 2006.
[25] S. Yan, D. Xu, B. Zhang, H.J. Zhang, Q. Yang, and S. Lin, “Graph embedding and
extensions: general framework for dimensionality reduction,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
[26] H. F. Hu, “Orthogonal neighborhood preserving discriminant analysis for face recognition,”
Pattern Recognit., vol. 41, no. 6, pp. 2045-2054, 2008.
[27] T. Ojala, M. Pietik¨ainen, and D. Harwood, “A comparative study of texture measures
with classification based on feature distributions,” Pattern Recognit., vol. 29,
no. 1, pp. 51-59, 1996.
[28] M. Pietik¨ainen, T. Ojala, and Z. Xu, “Rotation-invariant texture classification using
feature distributions,” Pattern Recognit., vol. 33, no. 1, pp. 43-52, 2000.
[29] B. Zhang, S. Shan, X. Chen, and W. Gao, “Histogram of gabor phase patterns
(HGPP): A novel object representation approach for face recognition,” IEEE Trans.
Image Process., vol. 16, no. 1, pp. 57-68, Jan. 2007.
[30] C. H. Chan, J. Kittler, N. Poh, T. Ahonen, and M. Pietikinen, “(Multiscale) local
phase quantisation histogram discriminant analysis with score normalisation for robust
face recognition,” in Proc. 12th Int. Conf.Comput. Vis. Workshops, Oct. 2009,
pp. 633-640.
[31] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition
under difficult lighting conditions,” IEEE Trans. Image Process., vol. 19, no. 6, pp.
1635-1650, Jun. 2010.
[32] S. H. Lee, J. Y. Choi, Y. M. Ro, and K. N. Plataniotis, “Local color vector binary
patterns from multichannel face images for face recognition,” IEEE Trans. Image
Process., vol. 21, no. 4, pp. 2347-2353, Apr. 2012.
[33] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET evaluation
methodology for face-recognition algorithms,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 10, pp. 1090-1104, Oct. 2000.
[34] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao, “The CASPEAL
large-scale Chinese face database and baseline evaluations,” IEEE Trans.
Syst., Man., Cybern. A, Syst. Humans, vol. 38, no. 1, pp. 149-161, 2008.
[35] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expression
database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1615-1618,
Dec. 2003.
[36] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting and pose,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 643-660, Jun. 2001.
[37] K. C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for face recognition
under variable lighting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no.
5, pp. 684-698, May 2005.
[38] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained nvironments, ”
Dept. Comput. Sci., Univ. Massachusetts, Amherst, MA, USA, Tech. Rep. 07-49,
Oct. 2007.
[39] C. Liu and H. Wechsler, “Gabor feature based classification using the enhanced
Fisher linear discriminant model for face recognition,” IEEE Trans. Image Process.,
vol. 11, no. 4, pp. 467-476, Apr. 2002.
[40] D. Zhang, W. K. Kong, J. You, and M. Wong, “Online palmprint identification,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1041-1050, Sep. 2003.
[41] L. Wolf, T. Hassner, and Y. Taigman, “Similarity scores based on background samples,”
in Proc. Asian Conf. Comput. Vis., 2009, pp. 1-5.
指導教授 范國清(Kuo-chin Fan) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明