博碩士論文 996201007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.142.200.226
姓名 楊智閔(Zhi-min Yan)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
(Study the dependence of long-range transported CO concentration on synoptic weather patterns in Taiwan during the spring season)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討地表參數對台灣地區氣象模擬的影響
★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析
★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬
★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響
★ 開發適用於大氣邊界層觀測的無人機系統★ 雲林地區細懸浮微粒的來源解析
★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響
★ 探討地下水參數化對於臺灣地表水文過程之影響★ 臺灣西南部海洋邊界層垂直結構特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣地區的污染物問題相當嚴重,其中包含了本地排放的污染物,來自東亞的長程傳輸污染物,以及近年來受到很多討論的東南亞生質燃燒污染物。許多前人研究指出,污染物跟氣象的因子是密切相關的,因此本研究中使用群集分析的方法,針對亞洲地區的綜觀天氣進行分類,並進一步探討在何種天氣類型下,容易造成台灣高污染事件的發生。分類的期間選定2007到2010年的春季期間,使用Weather Research and Forecasting (WRF)模式的模擬結果,作為綜觀天氣型態的分類依據,其空間解析度為27公里。
除了針對天氣進行分類,我們同時也選取了台灣的空氣品質測站,並根據分類的結果探討不同天氣型態與污染物之間的關係。分類的結果顯示,萬里站的低濃度都是發生在與西伯利亞高壓有關的群集(C2和C5),而綜觀天氣系統較弱的情形下(C3),風速較小,同時濃度也比較高。斗六站的部份,CO高濃度則同時出現在弱綜觀與高壓較強的分類(C1 和C3),顯示斗六的污染物不只是本地排放主導,同時也受到東亞地區長程傳輸污染物的影響。另外CO濃度的分佈情形,在鹿林山測站與恆春測站很類似,CO的濃度在高壓的天氣型態都是比較高的,濃度最高的群集同時也是高壓最強的群集(C5)。
為了了解東南亞生質燃燒的傳輸情形,我們根據鹿林山的CO濃度的高值,挑選2007年3月15到23日期間做為個案研究,嘗試了解東南亞生質燃燒的傳輸情形。在模擬期間,台灣受到高壓的影響,影響時間從17到22日,而鹿林山的CO高值則出現在3月16到18日。在此個案中,恆春站在3月16與19日也分別觀測到CO的高值。從軌跡分析可以發現,鹿林山CO的高值大部分都是來自於中南半島,顯示此個案的高值是受到東南亞生質燃燒之影響。分析結果顯示,當東南亞處於一個較遠離高壓影響的環境下,由於熱力的作用,生質燃燒的污染物較易被往上抬升,污染物被往上抬升後,便順著西風往東傳輸並影響台灣。我們同時也發現,在東北風的影響下,熱力作用所造成的抬升機制較不容易形成,生質燃燒污染物對其下風地區的影響也較小。此外恆春站的軌跡分析則指出,在此期間內,恆春站的CO高值是來自於東亞、菲律賓以及東南亞。
摘要(英) Taiwan has been suffered from serious air pollution problem including the locally produced air pollutants, long-range transported pollutants from Eastern China, and recently the biomass burning from Indochina also draws attention. The air pollution in Taiwan is strongly associated with the meteorological conditions. In order to identify the synoptic weather patterns that are prone to cause high pollutions in Taiwan, a clustering approach by means of the two–stage method is applied using the 27-km Weather Research and Forecasting (WRF) meteorological model simulation result. The study period targets the springtime season from 2007 to 2010.
The observed CO concentrations at several locations in Taiwan are used to identify the relationship between the meteorology and air pollution. The weather classification results showed that the low CO concentration appears mostly in the cluster that is associated with continental high-pressure systems at Wanli. And the high CO concentration is associated with the weaker wind speed in which the synoptic weather conditions are also weak. At Douliu station, the high CO concentration can appear in both weak synoptic weather pattern and strong high-pressure system. The distributions of CO concentration behave similarly at both LABS and Hengchun where the high CO concentrations are associated with the continental high-pressure systems.
Furthermore, a 9-km resolution WRF modeling with the updated land use data is performed from Mar 15 to 23 in 2007 to understand the transport mechanisms of biomass burning species from Indochina. During the simulation period, the high CO concentration was observed from Mar 16 to 18 at Lulin Mountain site. The high CO concentration also appeared on Mar 16 and 19 at Hengchun station. The analyses of the backward trajectories at LABS were mostly from Southeast Asia, which indicated the high CO concentration observed at LABS was attributed to the biomass burning activities from Indochina. The biomass burning pollutants were uplifted to upper layer and transport to Taiwan along the westerly wind, and the weak synoptic weather pattern is favorable for the transportation of pollutants to Taiwan. Finally, trajectories analysis was also applied to Hengchun, where the high CO concentration is transported from the eastern Asia, Philippines and Indochina. For the non-event cases we found the strong prevailing northeasterly monsoonal flow would hinder the development of the thermal low in Indochina.
關鍵字(中) ★ 長程傳輸
★ 一氧化碳
★ 群集分析
★ 天氣分類
★ 生質燃燒
關鍵字(英) ★ carbon monoxide (CO)
★ biomass burning
★ Weather classification
★ Cluster analysis
★ long-range transport (LRT)
論文目次 中文摘要..........i
Abstract..........iii
致謝..........v
Table of Contents..........vi
List of Tables..........viii
List of Figures..........ix
Chapter 1 Introduction..........1
Chapter 2 Methodology..........5
2.1 Configuration of WRF modeling..........5
2.2 Principle component analysis and Cluster analysis..........6
2.3 EPA data..........7
2.4 Satellite observations..........7
Chapter 3 Characterization of the weather classification results..........8
3.1 Synoptic weather patterns of each clusters..........8
3.2 Spatial distribution of satellite observed CO and AOD for each clusters..........10
3.3 Observed surface CO and meteorological characteristics of clusters..........10
3.4 Trajectory analysis for each clusters..........12
Chapter 4 Case study..........14
4.1 Weather characteristics during the study episode..........14
4.2 Trajectory analysis..........15
4.3 Particle analysis..........15
Chapter 5 Summary and future work..........18
References..........21
參考文獻 Borge, R., J. Lumbreras, S. Vardoulakis, P. Kassomenos, and E. Rodriguez, 2007: Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmos. Environ., 41, 4434–4450.
Chan, C. Y., L. Y. Chan, J. M. Harris, S. J. Oltmans, and D. R. Blake, 2003: Characteristics of biomass burning emission sources: transport and chemical speciation of enhanced springtime ozone profile of the troposphere over Hong Kong, J. Geophys. Res., 108, 4015.
Chen, F. and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.
Chiang, C.-K, J.-F Fan, J. Li, and J.S. Chang, 2009: Impact of Asian continental outflow on the springtime ozone mixing ratio in northern Taiwan, J. Geophys. Res., 114. D24304.
Darby, L., 2005: Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone, J. Appl. Meteor., 44, 1788 -1806.
Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model., J. Atmos. Sci., 46, 3077–3107.
Eder, B., J. Davis and P. Bloomfield, 1994: An Automated Classification Scheme Designed to Better Elucidate the Dependence of Ozone on Meteorology, J. Appl. Meteor., 33, 1182-1199.
Fu, J.S., N.C. Hsu, Y. Gao, K. Huang, C. Li, N.-H. Lin, and S.-C. Tsay, 2011: Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling, Atmos. Chem. Phys., 12, 3837–3855.
Huang, K., J.S. Fu, N.C. Hsu, Y. Gao, X. Dong, S.C. Tsay, and Y.F. Lam, 2012: Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA, Atmos. Environ. (online express).
Hong, S.-Y., Noh, Y., Dudhia, J., 2006. A new vertical diffusion package with explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 2318–2341.
Kain, J. S., Fritsch, J. M., 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteorol. Monogr. Ser., Am. Meteorol. Soc., 24, 165-170.
Langenfelds, R. L., R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M. Trudinger, and C. E. Allison, 2002: Interannual growth rate variations of atmospheric CO2 and its δ13 C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning, Global Biogeochemical Cycles, 16, 1048.
Lee, C.T, M.T. Chuang, N.H Lin, J.L. Wang, G.R Sheu, S.C. Chang, S.H. Wang, Hill Huang, H.W. Chen, Y.L. Liu, G.H. Weng, H.Y. Lai, and S.P. Hsu, 2011: The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmos. Environ., 45, 5784-5794.
Lin, C.Y., S.C. Liu, C.K. Charles, S.J. Huang, C.M. Liu, C.H. Kuo, and C.Y. Young, 2005: Long-range transport of aerosols and their impact on the air quality of Taiwan, Atmos. Environ., 39, 6066-6076.
Lin, C.Y., H.M. Hsu, Y.H. Lee, C. H. Kuo, Y.F. Sheng, D. A. Chu, 2009a: A new transport mechanism of biomass burning from Indochina as identified by modeling studies., Atmos. Chem. Phys., 9, 7901-7911.
Lin, C.Y., C.C. Chang, C.Y. Chan, W.C. Chen, Shaw C. Liu, 2009b: Characteristic of springtime profiles and sources of ozone in the low troposphere over northern Taiwan, Atmos. Environ., 44, 182-193.
Lin, C.Y., Hsu, and W.T., 2010: Observations of Carbon Monoxide Mixing Ratios at a Mountain Site in Central Taiwan during the Asian Biomass Burning Season, Atmos. Res., Vol. 95, 270-278.
Liu, Hongyu, D.J. Jacob, I. Bey, R.M. Yantosca, and B.N. Duncan, 2003: Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res., 108, 8786.
MacQueen, J.B., 1967: Some methods for classification and analysis of multivariate observations. Proc. of the 5-th Berkeley Symp. on Math. Stat. and Prob., Vol. 1, 281-297.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102 (D14), 16 663–16 682.
Ngan, F. and D. W. Byun, 2011: Classification of weather patterns and associated trajectories of high-ozone episodes in Houston-Galveston-Brazoria area during the 2005/06 TexAQS-II, J. Appl. Meteor. Climatol., 50, 485-499.
Streets, D. G., K. F. Yarber, J.-H. Woo, and G. R. Carmichael, 2003: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Global Biogeochemical Cycles, 17, 1099.
Ward, J., 1963: Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 236-44.
Yen M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Ling, 2012: Climate and weather characteristics in Southeast Asia during 7-SEAS, Atmos. Environ. (submitted).
Yu, J.Y., N.H. Lin, H.H. Hsieh, and T.S. Lin , 2008: A cluster analysis of the springtime forward trajectories arising from southeast Asia and the Climate, J. Atmos. Sci., Vol. 36, No. 4, 287-300.
指導教授 鄭芳怡(Fang-yi Cheng) 審核日期 2012-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明