博碩士論文 996201021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.23.101.60
姓名 馮語涵(Un-hei Fung)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 台灣夏季降雨與季風環流之分析
(Asian Summer Monsoon Circulation and Precipitation in Taiwan)
相關論文
★ 比較輻射傳輸模式(CLIRAD與RRTMG)的水氣與雲的輻射效應★ 微量溫室氣體對地球大氣系統的輻射強迫作用
★ 南亞高壓中心的位置分布在1970年代末期的變異對於亞洲夏季初期季風的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 亞洲-太平洋夏季季風(APSM)環流主要結構中心為亞洲大陸副熱帶區的高層高壓系統和北太平洋上低層的副熱帶高壓系統。台灣處於兩高壓交界帶,氣候具有高度敏感性。考量到北太平洋高壓和亞洲高壓的季節性演變所導致的季風區域內環流場及雨量急劇的改變,本研究不採用夏季(JJA)平均場資料,而另外訂定三個季風轉換期: Phase 1 (五月15日-六月14日)-東亞季風、中南半島季風肇始;Phase 2 (六月15日-七月24日)-印度季風肇始、華中梅雨、日本Baiu季;Phase 3 (七月25日-八月31日)-亞洲季風衰弱,日本Baiu季的結束、颱風最盛期。Phase 1時北太平洋高壓座落於菲律賓東部海域(約15°N);Phase 2時高壓脊線則是在台灣附近(約25°N左右);最後,Phase 3時高壓西部北抬至日本南方。
本研究使用中央氣象局10個氣象測站於1974-2010期間雨量代表台灣地區的降水情形,進行台灣乾濕年分類。台灣地區降水正距平年時,Phase 1期間所伴隨的氣候特徵為:北太平洋高壓增強向西南延伸,導致高壓北側的氣壓梯度和梅雨鋒面加強,而所引發的劇烈的對流加強了上層的亞洲高壓。然而增強的底層高壓抑制中南半島的底層南風,造成南北向的季風環流減弱;Phase 2多雨年時,北太平洋高壓減弱、東退,使得台灣脫離北太平洋高壓沉穩的下沉氣流控制,而且加強東亞-北太平洋西部(EA-WNP)的底層南風和垂直運動;Phase 3時北太平洋高壓增強、往西北延伸結束了日本的Baiu季。研究結果顯示台灣夏季降水主要受熱帶地區的北向氣流所影響,因而Phase 3時期位於中緯度帶的北太平洋高壓,對台灣降水影響不大。
為了檢驗上層亞洲高壓和下層太平洋高壓強度、東西向移動,兩高壓脊線交會處定為敏感區域,計算200hPa和850hPa平均重力位高度值作相關性分析。Phase 1的敏感區域為[120-150°E; 10-30°N]; Phase 2為[120-150°E; 15-35°N]; Phase 3為[120-150°E; 25-40°N]。分析結果發現Phase 1和Phase 2時相關係數為正,表示亞洲高壓增強(減弱)並東伸(西退)時,北太平洋高壓增強(減弱)並西伸(東退)。Phase 3時微弱的相關性說明大尺度環流對台灣夏季降水無顯著的影響。
雖然北太平洋高壓位置、亞洲高壓位置,以及上下對流層環流的特徵在各轉換期之間都不一樣,但是皆可看到台灣多雨時,南亞季風區對流減弱、低層的西風增強。另一方面,北太平洋高壓的變化加強EA-WNP地區底層的南風和垂直運動,因而構成活躍的夏季季風環流,導致包括台灣在內的EA-WNP低緯區的降水增加。
摘要(英) The dominant structures of the Asian–Pacific summer monsoon (APSM) circulation are the upper-level high pressure system in the subtropical Asia and the lower-level high pressure system in the subtropical North Pacific (NP). Taiwan borders the two high pressure systems, and its climate is highly sensitive to the highs. In consideration of the impact of the seasonal evolution of the NP high and the Asian high on the rapid changes of the circulation and precipitation in the ASPM regions, the summer monsoon transitions is investigated in this study by classify the summer into three monsoon phases , instead of the JJA mean datasets : Phase 1 (May 15-June14)- the onset of the East Asia and Indochina monsoons; Phase 2 (June15-July24)- the onset of the Indian summer monsoon , the Meiyu season in central China and the Baiu season in Japan; Phase 3 (July25-August31)- the withdrawal of the Asian summer monsoon, the end of the Baiu season in Japan, and maximum tropical cyclone activity. In Phase 1, the western stretch of the NP high is located in the east of the Philippines Sea (~ 15°N). In Phase 2, the ridge of the high is near Taiwan (~25°N). In Phase 3, the western of the NP high shifts northward to southern Japan.
In this study we used the (1974 to 2010) precipitation data collected at 10 CWB weather stations, and identified those years of anomalously high and low summer precipitation in Taiwan. It is found that in years when summer precipitation in Taiwan is anomalously high, the mean climate state are: during Phase 1 period, the strengthened and westward NP high intensifies gradient pressure and Meiyu frontal system to its north, which induce the deep convection and the enhanced upper-level Asia high. However, the intensified low-level high suppressed the surface southerly wind over Indochina weakens the meridional monsoon circulation; on Phase 2 when precipitation in Taiwan is anomalously high, the weakened and eastward retreat NP high causes that the climate in Taiwan is out of control form suppressed ascending motion of the NP high, and strengthened southerly wind and enhanced vertical motion in East Asia and the western NP (EA–WNP) region. On Phase 3, the NP high enhanced and extended northwestward ends the Baiu season. Our result demonstrates that the summer precipitation in Taiwan is mainly influenced by the northward flow from the tropic region. As a result, the impact of the NP high located in the mid-latitude zone is insignificant on the summer precipitation in Taiwan.
To examine the strength and zonal shift of the upper-level Asia high and the low-level NP high, we do correlation analysis by computing the mean geopotential height at 850hPa and 200hPa over the overlapping of the two high ridges denoted as sensitivity regions. The sensitivity regions are [120-150°E; 10-30°N], [120-150°E; 15-35°N], and [120-150°E; 25-40°N], from Phase 1 to 3, respectively. It is found that the positive correlation coefficients on Phase 1 and Phase 2 represent the intensified (weakened) and extended eastward (retreat westward) Asia high and the intensified (weakened) and extended westward (retreat eastward) NP high. The lack of the correlation between the highs indicates that the large scale circulation does not have an apparent impact on the summer precipitation in Taiwan.
It appears that the Asian monsoon circulation weakens in all three monsoon transition phases when precipitation in Taiwan is high, although the circulation characteristics of the three monsoon transitions are considerably different. The weakened convection in South Asia is associated with an increase of the surface westerly wind along the southern Asia. On the other hand, the low-level southerly wind and vertical motion in EA–WNP region enhances when precipitation in Taiwan is high, which implies an accelerated monsoon circulation surrounding South Asian and the EA-WNP region.
關鍵字(中) ★ 大尺度環流
★ 台灣降雨
★ 季風
關鍵字(英) ★ precipitation in Taiwan
★ monsoon
★ large scale circulation
論文目次 目錄
中文摘 要................................ ................................ ................................ ......................... I
英文摘要................................ ................................ ................................ ....................... III
致謝 ................................ ................................ ................................ ............................... VI
目錄 ................................ ................................ ................................ .............................. VII
附圖說明 ................................ ................................ ................................ ................... VIII
第一章 緒論 ................................ ................................ ................................ ............... 1
1.1 前言 ................................ ................................ ................................ ................ 1
1.2 研究動機與論文架構 : ................................ ................................ ................ 5
第二章 資料來源與研究方法 ................................ ................................ 7
2.1資料來源 ................................ ................................ ................................ 7
2.2分析方法: ................................ ................................ ................................ 9
2.3氣候敏感區域的界定: ................................ ................................ .............. 10
第三章 台灣夏季降水 ................................ ................................ ............................ 12
第四章 大尺度環流特徵 ................................ ................................ ....................... 15
4.1 重力位高度場與外逸長波輻射 (OLR) ................................ .................. 15
4.2 水平風場和經向環流垂直剖面 ................................ ........................... 19
4.3 溫度場 : ................................ ................................ ................................ ........ 23
4.4 亞洲高壓和北太平洋的關係 ................................ ........................ 25
第五章 結論 ................................ ................................ ................................ ................ 28
ReferencesReferencesReferences References ................................ .................... 31
參考文獻 郭勉之,2002:東亞夏季季風肇始之探討。國立中央大學大氣物理研究所博士班論文。
林筱婷,2010:影響夏季西北太平洋副熱帶高壓年季變化之氣候因子。國立中央大學大氣物理研究所碩士班論文。
李孟軒,2009:氣候異變(1979年)前後期夏季西北太平洋副高西伸東退之特性。國立中央大學大氣物理研究所碩士班論文。
吳奇樺,2010:擾動影響西北太平洋夏季季風研究。國立台灣大學大氣研究所博士班論文。
Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project(GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.
Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of The East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, J.-M., F.-C. Lu, S.-L. Kuo, and C.-F. Shih, 2005: Summer climate variability in Taiwan and associated large-scale processes. J. Meteor. Soc. Japan, 83, 449–516.
——, T. Li, and C.-F. Shih, 2010: Tropical cyclone– and monsooninduced rainfall variability in Taiwan. J.Climate, 23, 4107–4120.
Chen, T.-C., 2002: Maintenance of summer monsoon circulations: A planetary-scale perspective. J. Climate, 16, 744–762.
——, 2003: Maintenance of summer monsoon circulation: A planetary-scale perspective.J. Climate, 16, 2022–2037.
——, S.-Y. Wang, W.-R. Huang, and M.-C. Yen, 2004: Variation of the East Asian summer monsoon rainfall. J. Climate, 17,744–762.
Chou, M.-D., C.-H. Wu, and W.-S. Kau, 2011: Large-scale control of summer precipitation in Taiwan. J. Climate, 24, 5081–5093.
Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 2275–2287.
——, Li-Fan Huang, Jien-Yi Tu, Lishan Tseng, and Yu-Chieh Hsueh, 2009: El Niño Impacts on Precipitation in the Western North Pacific–East Asian Sector. J. Climate, 22, 2039–2057.
Ding, Y., Z. Wang, and Y. Sun, 2008: Interdecadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 1139–1161.
Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793–807.
Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi:10.1029/2001GL014523.
Hsu, H.-H., and C.-T. Chen, 2002: Observed and projected climate change in Taiwan. Meteor. Atmos. Phys., 79, 87–104.
——, and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, doi:10.1029/2003GL 017909.
——, C.-T. Terng, and C.-T. Chen, 1999: Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. J. Climate, 12, 793–810.
Hung, C.-w., and H.-H. Hsu, 2008: The first transition of the Asian summer monsoon,intraseasonal oscillation, and Taiwan mei-yu. J. Climate, 21, 1552–1568.
——, and M.-M. Lu, 2004: Decadal oscillation of spring rain in northern Taiwan. Geophys. Res. Lett., 31, L22206,doi:10.1029/2004GL021344.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kawatani Y, K. Ninomiya, and T. Tokioka, 2008: The North Pacific subtropical high characterized separately for June, July, and August: Zonal displacement associated with submonthly variability. J. Meteor. Soc. Japan, 86: 505–530.
Kinter III, J. L., K. Miyakoda, and S. Yang, 2002: Recent change in the connection from the Asian monsoon to ENSO. J. Climate, 15, 1203–1215.
Lau, K.-M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116, 18–37.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.
LinHo, and B. Wang, 2002: The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. J. Climate, 15, 2001–2019.
Liu, Y. M., G. X. Wu, H. Liu, and P. Liu: Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Climate Dynamics, 2001, Volume 17, Number 4, Pages 327-338.
Lu, M.-M., and R.-J. May, 2003: A study on the long-term variations of Taiwan and global precipitation. Atmos.Sci., 31, 199–220. (in Chinese)
Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc.Japan, 72, 719–745.
Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclonic and summer monsoons. J.Climate, 14, 3192–3211.
Shiu, C.-J., S. C. Liu, and J.-P. Chen, 2009: Diurnally asymmetric trends of temperature,humidity, and precipitation in Taiwan. J. Climate, 22, 5635–5649.
Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34,L11701, doi:10.1029/2006GL029204.
Tao,S., and L.Chen, 1987:A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology ,C .P. Chang and T.N. Krishnamurti, Eds.. Oxford University Press , 60-92.
Ueda, H., M. Ohba, and S. P. Xie, 2009: Important factors for the development of the Asian–Northwest Pacific summer monsoon. J. Climate, 22, 649–668.
Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090.
——, Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463.
——,Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711,doi:10.1029/2005GL022734.
Wu, C.-H., W.-S. Kau, and M.-D. Chou, 2009: Summer monsoon onset in the subtropical western North Pacific. Geophys. Res.Lett., 36, L18810, oi:10.1029/2009GL040168.
——, M.-D. Chou, 2012: Upper tropospheric forcing on late-July monsoon transition in East Asia and western North Pacific. J. Climate ; e-View.
Wu, R., 2002: Processes for the northeastward advance of the summer monsoon over the western North Pacific. J. Meteor.Soc. Japan, 80, 67–83.
Yanai, M., and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305–323.
Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2008: Relationship between ENSO and northward propagating intraseasonal oscillation in the East Asian summer monsoon system. J. Geophys. Res., 113, D14120, doi:10.1029/2008JD009901.
Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215.
指導教授 周明達(Ming-Dah Chou) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明