博碩士論文 996201023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.161.116
姓名 黃沛瑜(Pei-yu Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 使用多部都卜勒/偏極化雷達分析凡那比颱風(2010)的眼牆重建過程
(The Re-organizing process study of Typhoon Fanapi(2010) through multiple polarimatric/Doppler radar analyses)
相關論文
★ 賀伯颱風與地形間的交互作用★ SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析
★ 利用與滴譜儀分析雨滴粒徑分布:納莉颱風個案★ 利用都卜勒雷達分析颱風風場結構 - 2001年納莉颱風
★ 宜蘭地區豪雨個案之研究★ 利用二維雨滴譜儀研究雨滴譜特性
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究
★ 納莉颱風登陸時的結構演化★ 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性
★ 台灣北部初秋豪雨個案之降雨特性研究★ 雨滴粒徑分布模擬─雙偏極化雷達驗證
★ 梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究★ 2007年梅雨季期間之颮線個案分析
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2010 年9 月19 日,凡那比颱風於台灣東部海岸登陸,受中央山脈地形阻擋使颱風強度立即減弱。接下來的12 小時內,凡那比經歷了一重建過程(re-organizeing process),並且在岡山雨量站帶來7 小時內下600 毫米的破記錄降雨。X 波段雙偏極化都卜勒雷達(Taiwan Experimental Atmospheric Mobil Radar, TEAM-R)於颱風期間設置於七股雷達附近進行同步觀測。使用Liou et al.(2012)提出的多雷達合成技術,使用七股、TEAM-R、墾丁和馬公等四顆雷達進行
三維風場的合成。
06UTC 至12UTC,一條強對流雨帶(長~200 ㎞)由筆直到彎曲的螺旋形狀,最終形成眼牆。同時,在七股雷達的徑向風場分布,明顯可見當颱風通過台灣西南部時,在山脈西側,風向從北風逐漸地轉變為南風,這個特徵在TEAM-R RHI 也同樣觀測到。另外,在颱風再增強(re-intensifying)期間,TEAM-R RHI 觀測到
的重要特徵是: 南風分量的增強是從低層往中高層延伸上去的。多雷達合成的三維風場重現了雨帶轉彎、渦旋的形成,到最後形成眼牆的過程。在此期間內,雨帶上有幾項重要的特徵: 水平風增強、強上升運動、正渦度的形成等。而在雨帶附近的弱回波區,則有反演出下沉運動。熱動力反演結果顯示: 在眼牆重建過程中,有壓力梯度的增強。溫度場則可見雨帶上的冷卻及渦旋中心的加熱。
TEAM-R 的雙偏極化參數搭配雨滴譜儀資料可以進一步地了解強雨帶上的微物理特性。雨滴譜儀觀測顯示,颱風期間的質量權重直徑(Dm),約在0.5~2.5 mm,截距參數(Nw)約介在102.5~104 mm-1m-3。雷達反演DSD 的結果顯示,在06UTC 雨帶上的強上衝流造成了較大顆粒的雨滴;09UTC,上升運動稍減弱,產生了相對較小顆粒的雨滴;12UTC,眼牆上大範圍的上升運動,造成明顯較多的雨滴個數。
這是第一次在颱風重建階段,使用了四顆雷達觀測颱風結構的改變和與地形作用的影響。凡那比颱風重建過程中,切向風分量的肇始,中央山脈的阻擋可能扮演重要的角色。而螺旋雨帶上的強對流在爬坡過程中再進一步地被加強。到最後,颱風環流也會被加強並且重建。
摘要(英) At 00 UTC, September 19, 2010 typhoon Fanapi made landfall on the east coast of Taiwan and its intensity was immediately weaken due to high Central Mountain Ridge. In the next 12 hours, Fanapi went through a reorganizing process and brought record breaking 600mm rainfall within 7 hours to Gunsan station in southwest Taiwan. A mobile X-band dual polarization/Doppler radar, TEAM-R (Taiwan Experimental Atmospheric Mobil Radar) had been deployed near the Chigu S-band Doppler radar, together with Kenting S-band radar, and Magong C-pol radar these four radars provided great opportunity to study this event. A new
multi-Doppler radars wind field retrieval method proposed by Liou and Chang(2009) was used to synthesize three dimensional wind field.
From 06 UTC to 12 UTC , a strong convective rain band was slowly gaining its curvature and evolving into a spiral shape. At 12 UTC, an asymmetric eye wall was observed. During the same period, from Chigu S-band single Doppler wind pattern, it is obvious that wind direction changed from north wind to gradually increasing south wind at Chigu as the typhoon center passed southwest of Taiwan Island. At
09UTC, a vortex circulation was found at the lee side of Central Mountain Ridge in the synthesis wind field. The retrieved vortex-like pattern was near the lowest pressure location of surface stations observation. During the re-intensifying period, the other important feature is observed by TEAM-R RHI (range-height indicator) mode, the south wind component intensified from low level to mid and high level in a few hours.. The dual- polarimetric parameters of TEAM-R are used to study the microphysical characteristics of this torrential rain band. Three nearby disdrometers and TEAM-R radar further provide rain drop size distribution (DSD).The preliminary results showed the rather large mass weighted diameter Dm(~2.2 mm) and high concentration Nw (~104 mm-1m3) during the heaviest rain period.
For the first time in Taiwan, four radar systems had chance to observe the structure change and study the influence of the topography during the reorganizing stage. The blocking of the Central Mountain Ridge may play an important role of
the initiation of the tangential wind component. The stronger convection of the spiral band was further enhanced by the up-slope forcing. Subsequently, the typhoon circulation was also strengthen and re-organized.
關鍵字(中) ★ 以變分為基礎的多雷達風場合成 關鍵字(英) ★ variational-based multiple-Doppler radar synthes
論文目次 中文摘要...........................................................i
英文摘要..........................................................ii
致謝............................................... .............iii
目錄............................................... ..............iv
圖目錄............................................. ..............vi
表目錄............................................................xi
第一章: 序論.......................................................1
1-1 研究動機.......................................................1
1-2 文獻回顧.......................................................1
1-3 研究方向.......................................................3
1-4 論文架構.......................................................3
第二章: 資料來源與處理............................................5
2-1 資料來源 .....................................................5
2-1-1雷達資料.... .... ......... ............................. ..5
2-1-2 雨滴譜儀資料................................................7
2-2 都卜勒雷達資料品管處理........................................8
2-3 雙化極化雷達觀測原理簡介......................................8
2-3-1反射率及差異反射率.......................................9
2-3-2 差異相位差及比差異相位差.......................... .....10
2-3-3 同極化相關係數............................... ..........12
2-4 雙偏極化雷達資料品管處理.......................... ...........13
第三章: 雷達風場合成方法與熱動力場反演方法........................16
3-1 Liou(2012)多雷達風場合成原理..................................16
3-2 多雷達風場合成作業程序........................................18
3-3 熱動力反演....................................................19
第四章:凡那比颱風結構變化與動力機制......... .....................22
4-1 個案簡介.......... ......... ...... ...... ...................22
4-2 由七股雷達回波討論眼牆重建過程..... ...... ...................22
4-3 由單雷達徑向風分析颱風結構.......... .... .. .. ..............24
4-4 多雷達風場合成結果分析 .......................................25
4-4-1 由等高面討論反演風場表現.......... ... . .................25
4-4-2 等風速線分布.......... ... ........ ... . ................26
4-4-3 地面觀測資料比較...... ... ........ ... . ................27
4-4-4 Froude Number計算.......... ... ........ ... ............27
4-4-5 垂直運動場.......... ... ........ ... . ........... ......28
4-4-6 渦度場分布及渦度收支.......... ... ........ ... ..........28
4-4-7 三維風場垂直剖面..... ... ........ ... . .................29
4-5 熱動力反演結果分析...... ............................. .......29
第五章: 藉由雨滴粒徑分布討論降水之物理過程........................31
5-1 雨滴譜儀反演雨滴粒徑分布................................... ..31
5-2 雨滴譜儀觀測之雨滴粒徑分布....................................35
5-3 偏極化雷達參數反演雨滴粒徑分佈方法............................36
5-4 反演方法校驗....................... ........... ..............38
5-5 偏極化雷達參數反演雨滴粒徑分佈結果............................38
5-5-1 強雨帶時期(06 UTC)雨滴粒徑反演表現..................... 39
5-5-2 雨帶轉彎時期(09 UTC)雨滴粒徑反演表.......... .......... 39
5-5-3 眼牆重建時期(12 UTC)雨滴粒徑反演現.......... .......... 40
第六章 結論與未來展望.............................. ..............41
6-1 結論................. .......... .............. ..............41
6-2 未來展望........... ...... ...................... ............42
參考文獻.......... ...................................... ........43
附圖.......... ........................................... .......46
附表.......... ........................................... .......87
參考文獻 張偉裕,2002: 利用雨滴譜儀分析雨滴粒徑分布:納莉颱風個案,國立中央大學大氣物理研究所碩士論文,95頁。
紀博庭,2005: 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究,國立中央大學大氣物理研究所碩士論文,70頁。
呂崇華,2006: 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分布的物理特性,國立中央大學大氣物理所碩士論文,100頁。
廖信豪,2009: 利用SoWMEX/TiMREX實驗期間X-band雷達資料估計降雨,國立中央大學大氣物理研究所碩士論文,87頁。
洪榮川,2010: 薔蜜颱風雨滴粒徑特性及雙偏極化雷達,國防大學理工學院環境資訊及工程學系大氣科學碩士論文,108頁。
張偉裕,2010: 利用雙偏極化雷達及二維雨滴譜儀分析颱風降水系統特性,國立中央大學大氣物理研究所博士論文,118頁。
Bringi, V.N., V. Chandrasekar, 2001a: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press, 636 pp.
_____, V.N., T. D. Keenan, and V. Chandrasekar, 2001b: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.
_____, V.N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Scoenhuber, 2003a: Raindrop size distribution in different climate regimes from disdrometer and dual-po larized radar analysis . J. Atmos. Sci ., 60, 354 – 365.
_____, V.N., V. Chandrasekar, D. Zrnic, and C.W. Ulbrich, 2003b: Comments on “The need to represent raindrop size spectra as normalized gamma distribution for interpretation of polarimetric radar observation”. J. Appl. Meteor., 42, 1184-1189.
Brandes, E.A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl.
Meteor. 41, 674-685.
Chang, W. Y., Wang, C. T. C., and Lin, P. L, 2009.: Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western
Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J.Atmos. Oceanic Technol., 26,1973-1993
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Gray, W.M., and D.S. Shea, 1973: The hurricane’s inner core region, Ⅱ: Thermal stability and dynamic characteristics. J. Atmos. Sci. 30, 1565-1576
Holland, G.J., and R.T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Met. Soc., 110, 723-745
Judt Falko, and Shuyi S. Chen, 2010: Convectively Generated Potential Vorticity in Rainbands and Formation of the Secondary Eyewall in Hurricane Rita of 2005. J. Atmos. Sci. 67,3581-3599
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity pr ofile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 59-271
Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876-892
Liou, Y.-C., Y.-J. Chang., 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010.
_____, S.-F. Chang, and J. Sun, 2012: An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data. Mon. Wea. Rev., 40, 1603-1619
Marshall, J. S., and W. M. Palmer, 1948: The distributions of raindrops with size. J. Meteor., 9, 327–332.
Molinari, J., and S. Skubis, 1985: Evolution of the surface wind field in an intensifying tropical cyclone. J. Atmos. Sci., 42,2865-2879
Sheets, R.C., 1982: On the structure of hurricanes as revealed by research aircraft data. Topics in Atmospheric and Oceanographic Sciences, Intense Atmospheric Vorticies(ed. By L. Bengtsson and J. Lighthill). Springer-Verlag, Berlin, (ISPN 2-540-11657-5) 35-49.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775.
_____, D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 49-57
Willoughby, H.E., J.A. Clos and M.G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos.
Sci.,39, 395-411.
_____, 1998: Tropical Cyclone Eye Thermodynamics. Mon. Wea. Rev., 126, 3053-3067
Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648– 1661.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841.
指導教授 陳台琦(Tai-chi Chen Wang) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明