博碩士論文 996202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.239.56.184
姓名 許旆華(Pei-Hua Hsu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
(Mineralogy of potential reservoir and seal rocks for CO2 geologic storage in central Taiwan and its tectonic implications)
相關論文
★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化
★ 台灣海峽及台灣西部平原之沈積層速度構造★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動
★ 台灣中部早期前陸盆地的地層紀錄★ 台灣西南部前陸地區演育與古應力分析
★ 台灣西北部漸新世至更新世盆地演化及層序地層★ 煤岩材料與沉積環境綜合研判
★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究
★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵
★ 台灣西南外海高屏峽谷沉積物及沉積機制研究★ 台灣西南海域天然氣水合物地質控制因素與資源量評估
★ 臺灣台南外海正斷層以及近代沉積現象研究★ 台灣西南部麓山帶下部上新統之沉積環境及地層對比研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化碳地質封存是將二氧化碳灌注至地下岩層,藉由物理和化學的機制將其封存在地層中。灌注之二氧化碳可能與岩石中之礦物產生溶蝕或礦化反應,因此了解地層的礦物組成,有助於釐清二氧化碳在岩石中可能的化學反應機制。本研究樣本採集自台灣中部的苗栗明德水庫剖面、台中大甲溪與草湖溪剖面,採樣地層由老至新分別為東坑層、上福基砂岩、桂竹林層 (關刀山砂岩段、十六份頁岩段、魚藤坪砂岩段)、錦水頁岩及卓蘭層。利用岩象分析及X光繞射分析檢測潛在二氧化碳封存層及蓋層之礦物組成。
砂岩岩象分析結果顯示地層中主要礦物皆為石英,其中又以上福基砂岩的石英含量最高;其次為長石,以東坑層與上福基砂岩最多;岩屑含量以錦水頁岩與卓蘭層較多。次要礦物包括雲母、綠泥石、碳酸鹽類礦物與含鐵不透光礦物。東坑層、上福基砂岩、關刀山砂岩段底部與魚藤坪砂岩中段之樣本的孔隙填充物以基質為主,且含有較多孔隙;而關刀山砂岩含有相當多的膠結物,孔隙比例很低。全岩X光粉末繞射分析結果顯示主要礦物相為石英、正長石、微斜長石、斜長石、方解石、白雲石、伊萊石、高嶺石與綠泥石。黏土礦物則以伊萊石為主,唯上福基砂岩含量相對較低;其次為綠泥石,幾乎所有地層皆含有綠泥石,唯上福基砂岩含量較低;高嶺石以東坑層、上福基砂岩與魚藤坪砂岩段含量較高;膨脹性黏土礦物含量一般相當低,其中東坑層與上福基砂岩幾乎不含膨脹性黏土礦物。
地層中與二氧化碳封存之礦化機制相關的主要礦物包括長石、碳酸鹽類礦物與綠泥石,由於這些礦物普遍分布於所有地層當中,所以合併孔隙率與封存穩定性來討論。東坑層、上福基砂岩與魚藤坪砂岩中段具有較多的孔隙,可做為主要灌注目標層,而錦水頁岩可以做為主要的蓋層。封存層中東坑層、上福基砂岩與魚藤坪砂岩中段具有較少的碳酸鹽類礦物,可以提供較穩定的封存環境。而關刀山砂岩段含有大量的碳酸鹽類礦物,在灌注二氧化碳初期可能造成碳酸鹽類礦物大量溶蝕影響封存層的穩定性。桂竹林層含有大量的層間頁岩具有短期阻擋二氧化碳往上移棲之效益,延長移棲時間並增加與周圍礦物反應的機會。另外,由於封存深度較淺,主要次生的礦物可能會以碳酸鹽類礦物為主,而矽鋁黏土礦物則需要較長的時間才有機會生長。
另一方面,礦物組成變化是受到地體構造與來源區的影響。砂岩岩象結果顯示以石英與長石為主、岩屑含量低的東坑層與上福基砂岩來源區是屬於來自大陸華南地區 (穩定大陸地塊);相反的含有大量岩屑的卓蘭層則是以造山帶為沉積物主要來源區。根據古水流方向顯示桂竹林層時期的沉積物來自西方,表示主要來源區為大陸華南地區。地層中的砂岩與泥岩岩屑可能來自於受到造山帶荷重影響而抬升的前陸前凸起,使得關刀山砂岩段與魚藤坪砂岩段之母岩區地體構造分類偏向於造山帶沉積物。黏土礦物含量顯示,錦水頁岩以後伊萊石含量逐漸增加,表示來源區有造山帶變質岩出露。綠泥石則是不論來自大陸華南地區或是台灣造山帶皆有穩定的供給量,因此維持著穩定的含量。高嶺石主要來源是大陸華南地區花崗岩受風化後的產物,因此以大陸地區為主要來源區的東坑層與上福基砂岩含有大量的高嶺石,相反以造山帶為主要來源區的錦水頁岩與卓蘭層含量偏低。此外,高嶺石亦具有越靠近陸源含量越高的現象,可能影響魚藤坪砂岩段的高嶺石含量相對高於十六份頁岩與關刀山砂岩段。膨脹性黏土礦物含量變化與地層深埋深度無關聯,表示研究地層尚未受到明顯成岩作用的影響。
摘要(英) The geological storage of CO2 is a means that stores CO2 in deep porous rocks with CO2 trapped by physical and chemical processes. Injected CO2 may react with minerals in the host rocks, resulting in mineral dissolution or mineralization. In order to understand possible chemical reactions between CO2 and rocks, one needs to characterize the mineral contents of CO2 reservoirs and caprocks. Mineralogy of reservoir and seal rocks are characterized by petrographic studies and X-ray diffraction (XRD) analyses. Studied samples are collected from three stratigraphic sections of Ming-Der Dam, Tachiachi and Tsaohuchi, in central Taiwan. Those samples are from six stratigraphic units of Tungkeng Formation, Sangfuchi Sandstone, Kuantaoshan Sandstone, Shihliufen Shale, Yutenping Sandstone, Chinshui Shale and Cholan Formation, in a stratigraphically ascending order.
Predominant minerals in sandstone are quartz, feldspar and rock fragments. According to petrographic analysis, Many pores in sandstones are filled with cements for Kuantaoshan Sandstone, Yutenping Sandstone and lower part of Cholan Formation, but more open pores are found in the Tungkeng Formation, Sangfuchi Sandstone, lower part of the Kuantaoshan Sandstone and middle part of the Yutenping Sandstone. The results of whole rock XRD analyses show that main minerals in samples are quartz, orthoclase, microcline, plagioclase, calcite, dolomite, illite, kaolinite and chlorite. Dominant clay mineral is illite except for the Sangfuchi Sandstone. Chlorite is also common found in studied samples. Kaolinite is the most abundant clay mineral in Tungkeng Formation and Sangfuchi Sandstone. Smectite and mixed layered minerals are rarely found in whole studied samples.
Results of this study shows that there are high porosity for the Tungkeng Formation, Sangfuchi Sandstone, lower part of th Kuantaoshan Sandstone and middle part of the Yutenping Sandstone. They may serve as good CO2 reservoirs. Chinshui Shale may serves as main caprocks. Sandstones of the Tungkeng Formation, Sangfuchi Sandstone and middle part of the Yutenping Sandstone consist of minor amount of carbonate minerals, serving as stable reservoirs for CO2 geosequestration.
Predominant minerals in sandstones of the Tungkeng Formation and Sangfuchi Sandstone are quartz and feldspar with rare rock fragments, indicating that tectonic setting of source terranes are of South China continental block affinity. Abundant rock fragments in the Cholan Formation indicate that sediments were derived from Taiwan mountain belt.
關鍵字(中) ★ 二氧化碳地質封存
★ 上福基砂岩
★ 桂竹林層
★ 礦物組成
★ 台灣中部
關鍵字(英) ★ CO2 geosequestration
★ Sangfuchi Sandstone
★ Kueichulin Formation
★ mineral compositions
★ central Taiwan
論文目次 摘要 (中文)............................................................I
摘要 (英文)..........................................................III
誌謝...................................................................V
目錄..................................................................VI
圖目錄..............................................................VIII
表目錄.................................................................X
第一章 緒論...........................................................1
1.1 前言...........................................................1
1.2 研究區域之地質背景.............................................3
1.2.1 南莊層:東坑層與上福基砂岩...................................3
1.2.2 桂竹林層:關刀山砂岩段、十六份頁岩段與魚藤坪砂岩段...........4
1.2.3 錦水頁岩.....................................................5
1.2.4 卓蘭層.......................................................5
1.3 文獻回顧.......................................................6
1.3.1 台灣中西部之砂岩岩象與黏土礦物組成...........................6
1.3.2 二氧化碳與礦物之相互作用.....................................8
1.4 研究動機與目的................................................12
第二章 研究方法......................................................19
2.1 樣本來源與實驗流程............................................19
2.2 砂岩之岩象分析................................................20
2.3 全岩之X光粉末繞射分析.........................................22
2.4 樣本之黏土礦物分析............................................24
2.4.1 黏土礦物之順向試片與乙烯乙二醇飽和試片製作..................24
2.4.2 黏土礦物之X光繞射鑑定與分析.................................26
2.4.3 黏土礦物之半定量分析........................................28
第三章 結果..........................................................43
3.1 砂岩之岩象分析結果............................................43
3.2 全岩之X光粉末繞射分析結果.....................................44
3.3 黏土礦物之X光繞射分析結果.....................................45
第四章 討論..........................................................66
4.1 二氧化碳地質封存..............................................66
4.1.1 具封存潛能之礦物組成與化學反應..............................67
4.1.2 可能的封存與移棲模式........................................69
4.2 沉積物來源與地體構造..........................................71
4.2.1 砂岩岩象....................................................71
4.2.2 黏土礦物成份................................................73
第五章 結論..........................................................82
參考文獻..............................................................84
附錄..................................................................95
附錄一:黏土礦物之順向試片與乙烯乙二醇飽和試片製作 (步驟版).........95
附錄二:黏土礦物之標準X光繞射圖譜...................................98
膨潤石、伊萊石、高嶺石與綠泥石之標準X光繞射圖譜.............98
膨潤石與伊萊石混層黏土礦物之乙烯乙二醇飽和試片X光繞射圖譜...99
附錄三:全岩X光粉末繞射圖譜........................................100
附錄四:黏土礦物試片X光繞射圖譜....................................103
參考文獻 大村一藏 (1926) 台灣出磺坑及造橋油田之地質。台灣礦業彙報,第129號,第7至16頁。
王玲絲 (2012) 苗栗地區儲集層孔隙率與滲透特性評估。國立中央大學應用地質研究所碩士論文,共88頁。
江紹平 (2007) 台灣中部早期前陸盆地的地層紀錄。國立中央大學地球物理研究所碩士論文,共87頁。
安藤昌三郎 (1930) 台灣苗栗油田之地質與構造。地質學雜誌,第37卷,第447期,第799至803頁。
何信昌 (1994) 台灣地區五萬分之一地質圖及說明書第12號:苗栗圖幅。經濟部中央地質調查所出版,共69頁。
何信昌、陳勉銘 (2000) 台灣地區五萬分之一地質圖及說明書第24號:台中圖幅。經濟部中央地質調查所出版,共41頁。
何春蓀 (1986) 台灣地質概論:台灣地質圖說明書。經濟部中央地質調查所,共169頁。
何春蓀、耿文溥 (1953) 台灣新竹北埔至苗栗南莊間地質礦產。台灣省地質調查所彙刊,第4號,第1至20頁。
何春蓀、詹新甫、潘志偉、楊應塘 (1954) 台灣苗栗南莊煤田地質。台灣省地質調查所彙刊,第9號,第1至43頁。
李錦發 (2000) 台灣地區五萬分之一地質圖及說明書第18號:東勢圖幅。經濟部中央地質調查所出版,共117頁。
林朝棨 (1935) 台中豐原地方第三紀及第四紀地層之研究。台北帝國大學理農學部紀要,第13卷,第3期,第13至30頁。
林朝棨 (1954) 台灣之地形。台灣新誌,中國文化事業出版委員會。
林殿順 (2010) 台灣二氧化碳地質封存潛能及安全性。經濟前瞻,第132期,第93至97頁。
郝騤、蕭寶宗 (1957) 苗栗通霄背鈄構造之地質研究。中國石油公司成立十週年紀念論文集,第128至139頁。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰貴、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉 (2000) 上–更新世台灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13號,第137至156頁。
陳勉銘 (1993) 烏溪及東北海岸剖面漸新世以後泥岩中的黏土礦物特性與其構造環境之意義。國立臺灣大學地質學研究所碩士論文,共59頁。
陳振華、陳文山、王源、陳勉銘 (1992) 由台灣中部前陸砂岩之岩象研究看摺皺逆衝帶之剝蝕歷史。地質,第12卷,第147至165頁。
陳培源 (1993) 臺灣黏土礦物學研究之進展與成果。經濟部中央地質調查所特刊,第7號,第101至126頁。
陳培源 (2006) 台灣地質。台灣省應用地質技師公會,共526頁。
許樹坤、李明旭、王乾盈、楊耿明、林殿順、黃蕙珠、洪日豪、林再興 (2011) 台灣二氧化碳地質封存研究。國家科學委員會計畫期末報告書。
張日新 (2007) 晚新生代台灣西部前陸盆地之震測地層學、前凸起隆升與前陸演化。國立臺灣大學海洋研究所碩士論文,共51頁。
張益生 (1994) 臺灣西南部麓山帶上部中新統至更新統砂岩岩象與黏土礦物之分析及其構造意義。國立臺灣大學地質學研究所碩士論文,共86頁。
張堯婷 (2011) 超臨界二氧化碳–水–長石系統之礦物及化學反應。國立成功大學地球科學系碩博士班學位論文,共96頁。
張憲卿 (1994) 台灣地區五萬分之一地質圖及說明書第17號:大甲圖幅。經濟部中央地質調查所出版,共63頁。
張麗旭、何春蓀 (1948) 台中縣之大安背斜。地質評論,第13卷,第1至2 期。
鳥居敬造 (1935) 東勢圖幅及說明書。台灣總督府殖產局,第732號。
鳥居敬造、吉田要 (1931) 新竹州苗栗及竹東油田調查報告。台灣總督府殖產局,第585號。
焦中輝、林俊余、俞旗文、盧佳遇 (2011) 台西盆地南段晚中新世至更新世沉積地層作為碳地質封存層之探討研究。鑛冶,第55卷,第1期。第109至128頁。
黃安和 (2011) 台灣西北部中新世–更新世沉積岩中黏土礦物和成岩作用研究。國立中央大學地球物理研究所碩士論文,共103頁。
黃安和、林殿順、江威德、吳榮章 (2012) 台灣西北部中新世–更新世沈積岩黏土礦物研究。西太平洋地質科學,第12卷,第1至20頁。
楊志成 (1997) 台灣中部地區錦水頁岩、卓蘭層與頭嵙山層的沉積環境研究。國立臺灣大學地質學研究所碩士論文,共112頁。
楊健男 (2010) 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例。國立中央大學地球物理研究所碩士論文,共75頁。
趙杏媛、張有瑜 (1990) 黏土礦物與黏土礦物分析。海洋出版社,共339頁。
鄧屬予 (1997) 臺灣的沉積岩。經濟部中央地質調查所,共235頁。
謝凱旋、黃敦友 (2003) 台灣第三系的地層層序。台灣礦業,第55卷,第4期,第17至32頁。
羅偉、吳樂群、陳華玟 (1999) 台灣地區五萬分之一地質圖及說明書第25號:國姓圖幅。經濟部中央地質調查所出版,共71頁。
Baker, J. C., Bai, G. P., Hamilton, P. J., Golding, S. D., and Keene, J. B. (1995) Continental scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen – Gunnedah – Sydney Basin System, eastern Australia. Journal of Sedimentary Petrology, 65, 22 – 530.
Biq, C., Chang, L.-S., Chen, P.-Y., Ho, C.-S., Hsu, T.-L., Keng, W.-P., Lee, T.-H., Pan, C.-W., Tan, L.-P., Tsan, S.-F., and Yang, Y.-T. (1957) Lexique Stratigraphique International, 3, Asie, fascicule 4, Taiwan (Formosa), 154 pp.
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P. (2007) Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2STORE Projects. 273 pp.
Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G.A., Holloway, S., and Johannessen, P. N. (2004) Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29, 1371 – 1381.
Chen, P. Y. (1973) Clay minerals distribution in the sea – bottom sediments neighbouring Taiwan island and northern South China Sea. Acta Oceanographica Taiwanica, 3, 25 – 64.
Chen, W. -S., Ridgway, K. D., Horng, C. -S., Chen, Y. -G., Shea, K.- S., and Yeh, M. –G. (2001) Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geological Society of America Bulletin, 113, 10, 1249 – 1271.
Chiao, C. -H., Hwang, L. -T., Yang, M. -W., Chen, J. -L., Yu, C. -W., Ko, W. -C. and Lei, S. -C. (2012) Tai-power’s development status of CGS technology in Taiwan. Proceedings of 2012 Taiwan Symposium on Carbon Dioxide Capture, Storage and Utilization, November 25 – 27, Taipei, B 14.
Chiu, H. -T. and Hsu, C. -H. (1963) Subsurface geology of the Chinshui Gas Field, Miaoli, Taiwan. Petroleum Geology of Taiwan, 2, 253 – 269.
Chou, J. T. (1971) A sedimentologic and paleogeographic study of the Neogene formations in the Taichung region, western Taiwan. Petroleum Geology of Taiwan, 9, 43 – 66.
Chou, J. T. (1973) Sedimentary and paleogeography of the upper Cenozoic System of western Taiwan. Proceedings of Geological Society of China, 16, 111 – 143.
Chou, J. T. (1977) Sedimentary and paleogeography of the Pleistocene Toukoshan Formation in western Taiwan. Petroleum Geology of Taiwan, 14, 25 – 36.
Chou, J. T. (1980) Stratigraphy and sedimentology of the Miocene in western Taiwan. Petroleum Geology of Taiwan, 16, 33 – 52.
CO2CRC (2008) Storage Capacity Estimation, Site Selection and Characterization for CO2 Storage Projects. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Report No: RPT08-1001, 52.
Czernichowski-Lauriol, I., Sanjuan, B., Rochelle, C., Bateman, K., Pearce, J. M.,and Blackwell, P. (1996) In: Holloway, S. (ed.), Chapter 7 in ‘The Underground Disposal of Carbon Dioxide’, Final Report of the Joule II Project Number CT92-0031, British Geological Survey, Keyworth, Nottingham, UK, 183 – 276.
Czernichowski-Lauriol, I., Rochelle, C., Gaus, I., Azaroual, M., Pearce, J., and Durst , P. (2006) Geochemical interactions between CO2, pore – waters and reservoir rocks. In: Lombardi, S. et al. (eds.) Advances in the Geological Storage of Carbon Dioxide, Springer Netherlands, 157 – 174.
Dickinson, W. R. and Suczek, C. A. (1979) Plate Tectonics and Sandstone Compositions. The American Association of Petroleum Geologists Bulletin, 63, 2164 – 2182.
Dickinson, W. R. (1985) Interpreting provenance relations from detrital modes of sandstone. In: Provenance of Arenites, Zuffa, G. G. (ed.), Reidel, Dordrecht, 333 – 361.
Doughty, C., Freifeld, B. M., Trautz, R. C. (2008) Site characterization for CO2 geologic storage and vice versa – the Frio brine pilot, Texas, USA as a case study. Environmental Geology, 54, 1635 – 1656.
Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Mayer, B., Gunter, W. and Perkins, E. (2005) Monitoring of fluid – rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2 – injection enhanced oil recovery site, Saskatchewan, Canada. Applied Geochemistry, 20, 1131 – 1157.
Fischer, S., Liebscher, A., Wandrey, M. and the CO2SINK Group (2010) CO2 – brine – rock interaction: First results of long-term exposure experiments at in situ P – T conditions of the Ketzin CO2 reservoir. Chemie der Erde, 70 S3, 155 – 164.
Fischer, S., Zemke, K., Liebscher, A., Wandrey, M. and the CO2SINK Group (2011) Petrophysical and petrochemical effects of long-term CO2 – exposure experiments on brine – saturated reservoir sandstone. Energy Procedia, 4, 4487 – 4494.
Gaus, I., Le Guern, C., Pearce, J., Pauwels, H., Shepherd, T., Hatziyannis, G. and Metaxas, A. (2004) Comparison of long – term geochemical interactions at two natural CO2 – analogues. Montmiral (Southeast basin, France) and Messokampos (Florina basin, Greece) case studies. In: Rubin, E. S., Keith, D. W., Gilboy, C. F. (eds.), Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, 1, Peer-Reviewed Papers and Plenary Presentations: Cheltenham, UK, IEA Greenhouse Gas Program, 561 – 569.
Gaus, I., Azaroual, M. and Czernichowski-Lauriol, I. (2005) Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology, 217, 319 – 337.
Gaus, I. (2010) Role and impact of CO2 – rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4, 73 – 89.
Gunter, W. D., Wiwchar, B. and Perkins, E. H. (1997) Aquifer disposal of CO2 – rich greenhouse gases: Extension of the time scale of experiment for CO2 – sequestering reactions by geochemical modelling. Mineralogy and Petrology, 59, 121 – 140.
Gunter, W. D., Perkins, E. H. and Hutcheon, I. (2000) Aquifer disposal of acid gases: modelling of water – rock reactions for trapping of acid wastes. Applied Geochemistry, 15, 1085 – 1095.
Hangx, S. J. T. and Spiers, C. J. (2009) Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chemical Geology, 265, 88 – 98.
Hovorka, S. D., Benson, S. M., Doughty, C., Freifeld, B. M., Sakurai, S., Daley, T. M., Kharaka, Y. K., Holtz, M. H., Trautz, R. C., Seay Nance, H., Myer, L. R. and Knauss, K. G. (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environmental Geosciences, 13, 105 – 121.
Hsueh, C.-M. and Johns, W. D. (1985) Diagenesis of organic materials and clay minerals in the Neogene sediments of western Taiwan. Petroleum Geology of Taiwan, 21, 129 – 171.
IPCC (2005) Underground geological storage. In: Metz, B., Davidson, O., de Coninck, H. C., Loos, M. and Meyer, L. A. (eds.), IPCC Special Report on Carbon Dioxide Capture and Storage, UK.
Johns, W. D., Grim, R. E. and Bradly, W. F. (1954) Quantitiative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology, 24, 242 – 251.
Kårstad , O. (2002) Geological storage including costs and risks, in saline aquifers. Proceedings of Workshop on Carbon Dioxide Capture and Storage, November 18 – 21, Canada, 53 – 60.
Kharaka, Y. K., Cole, D. R., Hovorka, S. D., Gunter, W. D., Knauss, K. G. and Freifeld, B. M. (2006) Gas – water – rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology, 34, 577 – 580.
Lagneau, V., Pipart, A. and Catalette, H. (2005) Reactive transport modeling of CO2 sequestration in deep saline aquifers. Oil & Gas Science and Technology, 60, 231 – 247.
Lee, P. J. (1963) Lithofacies of the Toukoshan – Cholan Formation of Western Taiwan. Proceedings of Geological Society of China, 6, 41 – 50.
Lin, A. T. and Watts, A. B. (2002) Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research, 107, B9, 2185 – 2203.
Lin, A. T., Watts, A. B. and Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453 – 478.
Lin, A. T., Wang, S.-M., Hung, J.-H., Wu, M.-S., and Liu, C.-S. (2007) Lithostratigraphy of the Taiwan Chelungpu – Fault Drilling Project – A Borehole and Its Neighboring Region, Central Taiwan. Terr. Atmos. Ocean. Sci., 18, 223 – 241.
Liu, F., Lua, P., Griffith, C., Hedgesb, S. W., Soong, Y., Hellevang H. and Zhua, C. (2012). CO2 – brine – caprock interaction: Reactivity experiments on Eau Claire Shale and a review of relevant literature. International Journal of Greenhouse Gas Control, 7, 153 – 167.
Liu, Z., Colin, C., Huang, W., Le, K. P., Tong, S., Chen, Z. and Trentesaux, A. (2007) Climatic and tectonic controls on weathering in South China and the Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry Geophysics Geosystems, 8, 18 pp.
Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C. -Y., Selvaraj, K., Chen, C. -T. A., Zhao, Y., Siringan, F. P., Boulay, S. and Chen, Z. (2008) Detrital fine – grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149 – 155.
Lu, H. Y., Lin, C. K., Lin, W., Liou, T. S., Chen, W. F. and Chang, P. Y. (2011) A natural analogue for CO2 mineral sequestration in Miocene basalt in the Kuanhsi – Chutung area, Northwestern Taiwan. International Journal of Greenhouse Gas Control, 5, 1329 – 1338.
Matter, J. M. and Kelemen, P. B. (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 8, 837 – 841.
Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T. (2010) Geological storage of CO2 in saline aquifers – A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4, 659 – 667.
Mito, S., Xue, Z. and Ohsumi, T. (2008) Case study of the geochemical reactions at the Nagaoka CO2 injection site, Japan. International Journal of Greenhouse Gas Control, 2, 309 – 318.
Moore, D. M. and Reynolds, R. C., Jr. (1997) X – ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Edition. Oxford University Press, New York, 378 pp.
Moore, J., Adams, M., Allis, R., Lutz, S. and Rauzi, S. (2005) Mineralogical and geochemical consequences of the long – term presence of CO2 in natural reservoirs: an example from the Springerville – St. Johns field, Arizona and New Mexico, U.S.A. Chemical Geology, 217, 183 – 186.
Raistrick, M., Hutcheon, I., Shevalier, M., Nightingale, M., Johnson, G., Taylor, S., Mayer, B., Durocher, K., Perkins, E. and Gunter, B. (2009) Carbon dioxide – water – silicate mineral reactions enhance CO2 storage: Evidence from produced fluid measurements and geochemical modeling at the IEA Weyburn – Midale Project. Energy Procedia, 1, 3149 – 3155.
Reid, R. C., Prausnitz, J. M. and Poling, B. E. (1987) The properties of Gases and Liquids, 4th ed., McGraw-Hill, New York.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir Geological Society of China, 4, 67 – 89.
Teng, L. S. (1987) Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geologica Taiwanica, 25, 205 – 224.
Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc – continent collision in Taiwan. Tectonophysics, 183, 57 – 76.
Teng, L. S. and Lin, A. T. (2004) Cenozoic tectonics of the China continental margin: insights from Taiwan. In: Malpas, J., Fletcher, C. J. N., Ali, J. R. and Aitchison, J. C. (eds.) Aspects of the Tectonic Evolution of China, Geological Society, London, Special Publications, 226, 313 – 332.
Wigand, M., Carey, J. W., Schütt, H., Spangenberg, E. and Erzinger, J. (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Applied Geochemistry, 23, 2735 – 2745.
Worden, R. H. and Barclay, S. A. (2000) Internally – sourced quartz cement due to externally – derived CO2 in sub – arkosic sandstone, North Sea. Journal of Geo-chemical Exploration, 69 – 70, 645 – 649.
Worden, R. H. (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Marine and Petroleum Geology, 23, 61 – 77.
Xu, T., Kharaka, Y. K., Doughty, C., Freifeld, B. M. and Daley, T. M. (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio – I Brine Pilot. Chemical Geology, 271, 153 – 164.
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2013-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明