博碩士論文 996202603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.15.197.123
姓名 羅薇雅(Via Ramadlona Pramuktia Mei)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
(Multi-channel Seismic Study For Imaging Gas Hydrate and Ocean Fine Structures Offshore Southwest Taiwan)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 透地雷達特性分析應用於油品污染物探測
★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析
★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料
★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從2004年起,中央地質調查所持續針對台灣西南外海進行甲烷水合物的勘探與調查。本研究針對其多頻道震測資料同時進行海床下沉積與海水柱的構造成像,以探討西南外海處甲烷水合物的空間分布與其所富含甲烷水合物的潛能以及大尺度的海水的精細構造特徵,並建立甲烷水合物之沉積系統。甲烷水合物調查中,本研究主要著重於確定與標定海床下海底仿擬反射之空間分布為主,並同時偵測沿著震測測線之海水柱中可能存在的海流聲學構造之形貌。
沿著多頻道反射震測測線MGL0905-01與01R資料為TAIGER計劃於2009年四月2-3日期間進行探勘所蒐集。聲波能量經由40個體積為6600立方英吋的空氣槍組成的陣列以每隔50公尺擊發所產生。空氣槍陣列拖行於研究船Langseth後方,水下深度為8公尺。拖纜全長6公里,含468個水聽器群,各接收器的間距為12.5公尺,拖行於研究船後方,海水表面下的水平取樣空間為6.25公尺。每隔2毫秒取樣一次反射訊號。探勘測線範圍覆蓋約215公里,沿著水深小於100公尺的高屏下部斜坡,往南至水深達2600公尺的深海環境。多頻道反射震測以傳統震測資料處理程序之順序進行資料處理,產生最後的震測剖面。處理程序包括描線編修、帶通濾波、雜訊壓制、預測解迴旋、速度分析、重合及克希何夫重合後時間移位。
甲烷水合物的存在關聯著震波空白、低頻率內涵、極性相反且連續的海底仿擬反射清楚可見,而海底仿擬反射於海床下的分布變化在雙程走時0.2~0.5秒之間。數個逆斷層可解釋為扮演著流體移棲的通道與封閉,而脆性區、多孔隙傾翻岩床、滑脫面推測可能是潛在的油氣苗移棲路俓。水柱中反射訊號的出現顯示出水柱間有阻抗的差異存在,於雙程走時1200毫秒處相對地強反射訊號的出現表示其可辨識出海水中溫鹽所產生的精細構造。反射訊號的主要形貌在中間層處較深層含更多連續性且清楚地振幅,而在靠近陸坡則變相當不連續。精糙海底地形可歸屬於動態海洋學過程中所產生。本研究方法未來可納入標準震測資料處理的流程之一。
摘要(英) Multi-channel seismic data has been implemented for simultaneous imaging the sub-seafloor sedimentary structure features and characterizing the spatial distribution of gas hydrate and the large-scale ocean current structure in the water column. The imaging sub-seabed features in exploration of gas hydrate potential in SW Taiwan have been investigated and supported under Central Geology Survey since 2004. This study was primarily focusing on the gas hydrate investigation to determine the distribution of BSRs in the subsurface and additional purpose to detect the possible presence of the oceanic current acoustic structure features in the water column along the survey line.
Multi-channel seismic reflection data along MGL0905-01 and 01R were acquired by the TAiwan Integrated GEodynamics Research (TAIGER) project. The surveys were performed during April 2-3, 2009. Acoustic energy produced from 40 of air-gun array with combined volume of 6600 cubic inches was fired every 50 m. The airgun array was towed behind Langseth at depth of 8 m. An six-km-long streamer containing 468 hydrophone groups with receiver space of 12.5 m was towed behind the ship resulting in a horizontal subsurface sampling spacing of 6.25 m. Reflected signal was sampled every 2 ms. The survey line covered about 215 km and along lower slope of Kaoping shelf with water depth of less than 100 m then further south towards the deep marine environment where water depth reaches 2600 m. The MCS data was sequentially processed with conventional seismic processing strategy including trace editing, bandpass filtering, noise suppression, predictive deconvolution, velocity analysis, stacking and Kirchhoff post-stack time migration to create the final seismic profile.
The presence of gas hydrates are associated with blanking, low frequency contents and clear reverse polarity of continuous BSRs. The distribution of the BSR varied from 0.2 to 0.5 s in two-way travel-time (TWTT) below seafloor. Several thrust faults had been interpreted which act role as fluid conduits. The brittle zone and porous tilted beds can be speculated as the other potential migration pathways for gas-seepages. At the same time, the appearance of reflectors revealed the existence of distinct impedance contrast inside the water column affected by complex physical processes. The reflectors were identified as thermohaline fine structures that appear relatively strong in approximately above 1200 ms TWTT. The major reflectors patterns in the middle layer are more continuous with clear amplitude changes in deeper water region and fairly discontinuous when it is near the continental slope. Rough morphologic seafloor could be attributed to the dynamics oceanographic processes that occur.
關鍵字(中) ★ 多頻道震測
★ 海底仿擬反射
★ 甲烷水合物
★ 海洋精細構造
★ 成像
關鍵字(英) ★ MCS
★ BSR
★ Gas Hydrate
★ Ocean Fine Structure
★ Imaging
論文目次 Chinese Abstract i
Abstract iii
Acknowledgements v
Table of Contents vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Gas Hydrate Investigation Programs in Taiwan 2
1.1.1 An Overview of Gas Hydrate 2
1.1.2 Previous Investigation Studies 3
1.2 Seismic Reflection for Oceanography 4
1.3 Tectonic Framework of Southwestern Taiwan 6
1.4 Objectives of Study 8
Chapter 2 Multi-Channel Seismic Data Processing 16
2.1 Data Acquisition Survey and Seismic Dataset 16
2.2 MCS Data Processing Flow 17
2.3 Data Pre-processing Flow and Strategies, Quality Control and Justification 18
2.4 Velocity Analysis and Normal Moveout Correction 20
2.5 CDP Stacking 21
2.6 Time Migration 21
Chapter 3 Gas Hydrate Investigation and BSRs Distributions Along MGL0905-01 31
3.1 Distributions of Gas Hydrate Occurrences 31
3.2 Gas Hydrate Models in the Study Area 34
3.2.1 Narrow Anticline Ridge 34
3.2.2 Yuan-An Ridge 34
Chapter 4 Oceanic Fine Structure Features, Offshore SW Taiwan 42
4.1 Seismic Image, Ocean Interior Feature, and Internal Waves 42
4.2 Identification of Sea Water Stratifications 46
Chapter 5 Conclusions 54
References 56
參考文獻 Aken, Hendrik M. Van, 2007. The oceanic thermohline circulation: an introduction: New York, Springer, p. 1-16.
Bell, T. H. Jr., 1975. Topographycally generated internal waves in the open ocean, Journal of Geophysical Research, 80, 320-327.
Birchwood, R., Dai, J., Shelander, D., Boswell, R., Collett, T., Cook, A., Dallimore, S., Fujii, K., Imasato, Y., Fukuhara, M., Kusaka, K., Murray, D., Saeki, T., 2010. Development in gas hydrates, Oilfield Review, 22, 18-33.
Chang, C., Angelier, J., Huang, C., 2000. Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan, Tectonophysics, 325, 43-62.
Cheng, W., Lin, S. S., Wang, T. K., Lee, C. S., Liu, C. S., 2010. Velocity structure and gas hydrate saturation estimation on active margin off SW Taiwan inferred from seismic tomography, Marine Geophysical Researches, 31, 77-87.
Chi, W., Reed, D. L., Liu, C., and Lundberg, N., 1998. Distribution of the bottom simulating reflector in the offshore Taiwan collision zone, Terr. Atmos. Ocean. Sci., 9, 779-794.
Chiang, C., Yu, H., and Chou, Y., 2004. Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system, Basin Research, 16, 65-78.
Chow, J., Lee, J. S., Sun, R., Liu, C., and Lundberg, N., 2000. Characteristics of the bottom simulating refectors near mud diapirs:offshore southwestern Taiwan, Geo-Marine Letter, 20, 3-9.
Chuang, P. C., Yang, T. F., Lin, S., Lee, H. F., Lan, T. F., Hong, W. L., Liu, C. S., Chen, J. S., and Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan, Terr. Atmos. Ocean. Sci., 17, 903-920.
Claypool, G.E. and Kaplan, I. R., 1974. The origin and distribution of methane in marine sediments, in Kaplan, I.R., ed., Natural gases in marine sediments: New York, Plenum, p. 99–139.
Covey, M., 1984. Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep, Petrol Geol Taiwan, 20, 53-83.
Cox, C. and Sandstrom, H., 1962. Coupling of internal and surface waves in water of variable depth, J. Oceanogr. Soc. Jap, 20, 499-513.
Cox, M., 1999. Static corrections for seismic reflection surveys: Oklahoma, Society of Exploration Geophysicists, p. 315-317.
Demirbas, A., 2010. Methane hydrates as potential energy resource: Part 1–importance, resource and recovery facilities, Energy Conversion and Management, 51, 1547-1561.
Elboth, T., Geoteam, F., Hermansen, S. I., and Fugro, 2009. Attenuation of noise in marine seismic data, Society of Exploration Geophysicists, 3312-3317.
Foucher, J., Nouzé, H., and Henry, P., 2002. Observation and tentative interpretation of a double BSR on the Nankai slope, Mar. Geol., 187, 161-175.
Fuh, S., Liu, C. S., Lundberg, N., and Reed, D. L., 1997. Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes, Tectonophysics, 274, 25-39.
Garrett, C and Munk, W., 1975. Space-time scales of internal waves: a progress report, Journal of Geophysical Research, 80, 291-297.
Gornitz, V., 1994. Potential distribution of methane hydrates in the world’s ocean, Global Biogeochemical Cycles, 8, 335-347.
Hatton, L., Worthington, M. H., and Makin, J., 1986. Seismic data processing, theory and practice: Oxfort, Blackwell Scientific Publications, ISBN:0-632-01374-5.
Holbrook, W. S. and Fer, I., 2005. Ocean internal waves spectra inferred from seismic reflection transects, Geophys. Res. Lett., 32, L15604, doi:10.1029/2005GL023733.
Holbrook, W. S. and Fer, I., 2008. Seismic reflection methods for study of the water column, Encyclopedia of Ocean Sciences, 581, 1-26.
Holbrook, W. S., Paramo, P., Pearse, S., and Schmitt, R. W., 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling, Science, 301, 821-824.
Huang, C., Wu, W., Chang, C., Tsao, S., Yuan, P. B., Lin, C., and Xia, K., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan, Tectonophysics, 281, 31-51.
Hyndman, R. D. and Spence, G. D., 1992. A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophys. Res., 97(B5), 6683-6698.
Hyndman, R. D. and Davis, E. E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom simulating reflectors by vertical fluid expulsion, Journal of Geophysical Research, 97, 7025-7041.
Hyndman, R. D., Foucher, I. P., Yamano, M., Fisher, A., and Scientific Team of Ocean Drilling Program Leg 131, 1992. Deep sea bottom simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates, Earth and Planetary Science Letters, 109, 289-301.
Jeet, S., Nisha, S. S., Hari, K. K., and Balasubramaniam, M. K., 2008. Noise attenuation and pre-conditioning of seismic data for time and depth imaging in deep water environment- East Coast of India , 7th Biennial International Conference and Exposition on Petroleum Geophysics, 418-422.
Katz, E. J., and Briscoe, M. G., 1979. Vertical coherence of the internal wave field from towed sensors, Journal of Physical Oceanography, 9, 518-530.
Kvenvolden, K. A., 1993. Gas hydrates—geological perspective and global change., American Geophysical Union, 31, 173-187.
Klaeschen, D., Hobbs, R. W., Krahmann, G., Papenberg, C., and Vsemirnova, E., 2009. Estimating movement of reflectors in the water column using seismic oceanography, Geophys. Res. Lett. 36, LL00D03, doi:10.1029/2009GL038973.
Krahmann, G., Brandt, P., Klaeschen, D., and Reston, T., 2008. Mid-depth internal wave energy off the Iberian peninsula estimated from seismic reflection data, Journal of Geophysical Research, 113, C12016, doi:10.1029/2007JC004678.
Kvenvolden, K. A. and Lorenson, T. D., 2001. The global occurrence of natural gas hydrate, in natural gas hydrates: occurrence, distribution, and detection, edited by C. K. Paull and W. P. Dillon, Geophys. Monogr. Ser., 124, 3-18.
Lacombe, O., Mouthereau, F., Angelier, J., and Deffontaines, B., 2001. Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan, Tectonophysics, 333, 323-345.
Lee, T. Y., Tang, C. H., Ting, J. S., and Hsu, Y. Y., 1993. Sequence stratigraphy of the Tainan basin, offshore southwestern Taiwan, Petrol Geol Taiwan, 28, 119-158.
Lin, A. T., Watts, A. B., and Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, 15, 453-478.
Lin, A. T., Liu, C., Lin, C., Schnurle, P., Chen, G., Liao, W., Teng, L. S., Chuang, H., and Wu, M., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan, Mar. Geol., 255, 186-203.
Lin, A. T., Yao, B., Hsu, S., Liu, C., and Huang, C., 2009a. Tectonic features of the incipient arc-continent collision zone of Taiwan: implications for seismicity, Tectonophysics, 479, 28-42.
Lin, C. C., Lin, A. T., Liu, C. S., Chen, G. Y., Liao, W. Z., and Schnurle, P., 2009b. Geological cotrols on BSR occurences in the incipient arc-continent collision zone off southwest Taiwan, Mar.Pet.Geol., 26, 1118-1131.
Lin, C. C., 2011. Geological controls of gas hydrate occurrences and gas hydrate resource assessment, offshore southwest Taiwan, Master Thesis. Chungli: Institute of Geophysics, National Central University. (Report in English).
Lin, S., Kalmychkov, G. V., Cheng, W., Hsu, C. W., Lim, Y., Yang, T. F., Pogodaeva, T. V., 2012. Sulfur isotopic variation and role of sulfate in the freshwater methane-rich lake Baikal: carbon/sulfur cycling, International Conference on Gas in Marine Sediments, 11, Abstract
Liu, C., Deffontaines, B., Lu, C., and Lallemand, S., 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan, Marine Geophysical Researches, 25, 123-137.
Liu, C., Huang, I. L., and Teng, L. S., 1997. Structural features off southwestern Taiwan, Mar. Geol., 137, 305-319.
Liu, C., Schnürle, P., Wang, Y., Chung, S., Chen, S., and Hsiuan, T., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan, Terr. Atmos. Ocean. Sci., 17, 615-644.
Lundberg, N., Reed, D. L., Liu, C., and Lieske, J. Jr., 1997. Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan, Tectonophysics, 274, 5-23.
McDonnel, S. L., Max, M. D., Cherkis, N. Z., and Czarneeki, M. F., 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan, Mar.Pet.Geol., 17, 929-936.
Nakamura, Y., Noguchi, T., Tsuji, T., Itoh, S., Niino, H., and Matsuoka, T., 2006. Simultaneous seismic reflection and physical oceanographic observations of ocean fine structure in the Kuroshio extension front, Geophys. Res. Lett., 33.
Nandi, P., Holbrook, W. S., Pearse, S., Paramo, P., and Schmitt, R. W., 2004. Seismic reflection imaging of water mass boundaries in the Norwegian sea, Geophys. Res. Lett., 31, L23311, doi:10.1029/2004GL021325
Osborn, Thomas R., 1974. Vertical profiling of velocity microstructure, Journal of Physical Oceanography, 109-115.
Paramo, P. and Holbrook, W. S., 2005. Temperature contrasts in the water column inferred from amplitude-versus-offset analysis of acoustic reflections, Geophys. Res. Lett., 32.
Paramo, P., Holbrook, W. S., Pearse, S., and Schmitt, R. W., 2003. Finescale thermohaline structure revealed by seismic reflection profiling in the Gulf of California, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract OS32C-07.
Pearse, S., Holbrook, W. S., Paramo, P., and Schmitt, R. W., 2003. Timelapse seismic reflection images of thermohaline intrusions in an oceanographic front, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract OS41C-0821.
Schnürle, P., Liu, C., Lin, A. T., and Lin, S., 2011. Structural controls on the formation of BSR over a diapiric anticline from a dense MCS survey offshore southwestern Taiwan, Mar. Pet. Geol., 28, 1932-1942.
Sloan Jr., E. D., 1997. Gas hydrate tutorial, American Chemical Society Spring Meeting 1997 San Francisco, 42, 449-456.
Song, H. B., Luis, P., Wang, D. X., Dong, C. Z., Song, Y., and Bai, Y., 2009. Seismic images of ocean meso-scale eddies and internal waves, Chinese Journal of Geophysics, 52, 1251-1257.
Sundermeyer, M., and Ledwell, J., 2001. Lateral dispersion over the continental shelf: analysis of dye release experiments, Journal of Geophysical Research,106(C5), 9603-9621.
Sun, S. C., 1985. The Cenozoic tectonic evolution of offshore Taiwan, Energy, 10, 421-432.
Sun, S. and Liu, C., 1993. Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan, Petrol Geol Taiwan, 28, 1-14.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-34.
Taner, M. T. and Koehler, F., 1969. Velocity spectra-digital computer derivation and applications of velocity functions, Geophysics, 39, 859-881.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76.
Tinivella, U. and Giustiniani, M., 2013. Variations in BSR depth due to gas hydrate stability versus pore pressure, Global Planet. Change, 100, 119-128.
Tsuji T., Noguchi, T., Niino, H., Matsuoka, T., Nakamura, Y., Tokuyama, H., Kuramoto, S., and Bangs, N., 2005. Two-dimensional mapping of fine structures in the Kuroshio current using seismic reflection data. Geophys. Res. Lett., 32: L14609 (doi:10.1029/2005GL023095).
Tucholke, B. E., Bryan, G. M., and Ewing, J. I., 1977. Gas-hydrate horizons detected in seismic-profiler data from the western north Atlantic, AAPG Bulletin, 61, 698-707.
Wang, H., Zhu, L., and Chen, H., 2010. Moho depth variation in Taiwan from teleseismic receiver functions, Journal of Asian Earth Sciences, 37, 286-291.
Wu, S., Zhang, G., Huang, Y., Liang, J., and Wong, H. K., 2005. Gas hydrate occurrence on the continental slope of the northern South China Sea, Mar. Pet. Geol., 22, 403-412.
Wunsch, C., 2002. What is the thermohaline circulation? Science, 298, 1179-1180.
Yan, P., Hui, D., and Liu, H., 2006. The geological structure and prospect of gas hydrate over the Dongsha slope, South China Sea, Terr. Atmos. Ocean. Sci., 17, 645-658.
Yang, T. F., Liu, C., Chen, J., and Huang, C., 2006. Preface to the special issue on gas hydrate research around the South China Sea and Taiwan, Terr. Atmos. Ocean. Sci., 17, 1-4.
Yilmaz, O., 2001. Seismic data analysis: processing, inversion and interpretation of seismic data: Oklahoma, Society of Exploration Geophysicists, p. 90-124.
Yu, H., Chiang, C., and Shen, S., 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) submarine canyon, J. Mar. Syst., 76, 369-382.
指導教授 陳浩維(How-Wei Chen) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明