博碩士論文 996203020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.232.31.206
姓名 林漢威(Han-Wei Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 利用多層模型於全波形光達分析樹冠結構
(Multiple Layer Model for Tree Structure Analysis in Full Waveform LIDAR)
相關論文
★ 利用高光譜影像作異常物偵測★ 利用電腦自動化對數值高程模型作線形偵測
★ 利用多光譜影像的光譜與空間資訊結合數學型態學進行海洋油汙偵測★ 利用遙測影像自動萃取校正點
★ 新的影像融合演算法應用於多光譜遙測影像★ 利用固定式攝影機即時偵測土石流
★ 藉由電腦視覺自動偵測土石流★ 利用MHE對多光譜影像輻射校正並 應用於土石流變遷偵測
★ 單發多收合成孔徑雷達模擬與實驗★ 福爾摩沙五號衛星影像壓縮之實現
★ 電磁散射模型於粗糙表面之研究★ 超寬頻Ka波段於樹之散射量測及研究分析
★ 立體影像對自動特徵點提取進行三維重建★ Comparison of Change Detection Methods Based on the Spatial Chaotic Model for Synthetic Aperture Radar Imagery
★ 利用遙測影像偵測碟型天線之方向★ 超解析成像法應用於光學衛星影像之比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空載雷射掃瞄系統(ALS)是一種主動式的遙測系統,利用紅外線對地表的反射與紀錄,能快速的獲得物表的三維點座標。全波形光達系統(Full waveform LIDAR systems)是一種新型的主動式遙測系統,和傳統光達系統相比,全波形光達系統可以克服許多弊端。以取樣頻率為例,全波形光達的取樣頻率可以到達1GHz。因為在取樣頻率上全波形光達比傳統光達要高上許多,因此全波形光達回波資料在描述待測物上遠比傳統光達來得詳細。
  一般來說,求取點雲位置的演算法有很多,但大多數的方法都是在回波中找出一到兩個點來做為點雲的位置,對樹冠的結構並未多加描述。由於全波形光達在回波資訊上的紀錄是非常的完整,因此可以試著由回波資訊來分析樹冠的結構。
  本篇論文使用多層模型來模擬樹冠的結構。在模型中套用了輻射傳輸方程式來協助我們了解每個時間點光線的路徑和消散程度。在實驗的過程中,層間的反射率、透射率以及層與層之間的寬度是本實驗的重點。
  實驗所使用的光達資料是國立中央大學校園內闊葉樹和針葉樹的空載全波形光達資料。由實驗分析可以得知,闊葉樹-樹冠分佈廣且疏,針葉樹-樹冠分佈小且密,這兩組特徵在回波資料的分析上可以有明確的表現。
摘要(英) Airborne laser scanning (ALS) is an active remote sensing technique where a laser emits short infrared pulses towards the Earth’’s surface and the backscattered echo is recorded. Full waveform LIDAR systems are new technology. Comparing to traditional LIDAR instrument, full waveform LIDAR system can overcome many drawbacks of traditional multi-echo LIDAR data. It permits recording with typical 1 GHz frequency sampling the received signal for each transmitted laser pulse. Therefore, full waveform LIDAR data can demonstrate the vertical structure of target, since the density of waveform is much higher than traditional multi-echo LIDAR data.
Generally, point cloud is selecting the specific point in the wave, such as peak point, 50% intensity etc. Because full waveform LIDAR can record the complete waveform of the backscattered signal echo, a lot of information is carried by the full waveform LIDAR data. It is not adequate to express the information only using one point. Therefore, in this research we hope to use the multiple layers model to simulate the target such as canopy. Here we adopt the radiation transfer equation to simulate the route of light. To simulate the composition of target thoroughly, adjusting width of every layer is necessary.
The LIDAR data used for experiments are from area in National Central University. The experimental data is divided into coniferous tree and broadleaf tree. From the result, the method is effective in fitting the waveform data. The broadleaf tree canopies are wide and sparse, and coniferous tree canopies are small and dense. These two sets of characteristics are clear from the analysis of the echo data.
關鍵字(中) ★ 樹冠結構
★ 全波形光達
★ 多層模型
關鍵字(英) ★ Tree Structure
★ Multiple Layer Model
★ Full Waveform LIDAR
論文目次 摘 要……………………………………………………………………i
Abstract.…………………………………………………………………iii
致謝………………………………………………………………………v
Contents…………………………………………………………………vi
Lists of Figures……………………………………………………viii
Lists of Tables..……………………………………………………xi
Chapter 1 Introduction……………………………………………………1
1.1 Motivation and Overview………………………………………1
1.2 Flowchart………………………………………………………2
1.3 Thesis Organization ……………………………………………3
Chapter 2 Review………………………………………………………4
2.1 Full waveform LIDAR system and data…………………………4
2.2 Radar equation …………………………………………………7
2.3 Point cloud……………………………………………………9
Chapter 3 Simulation algorithm………………………………………10
3.1 Multiple layers model …………………………………………10
3.2 Radiation transfer equation……………………………………13
3.3 Data time constraints…………………………………………14
3.4 Parameters……………………………………………………15
3.4.1 Modeling Principle………………………………………15
3.4.2 Extinction coefficient……………………………………16
3.4.3 Reflectance……………………………………………17
3.4.4 Standard deviation………………………………………19
3.4.5 Offset…………………………………………………19
Chapter 4 Experimental Results………………………………………21
4.1 Data source and software………………………………………21
4.2 Waveform preconditioning……………………………………24
4.3 Experimental results……………………………………………24
4.3.1 Broadleaf Tree…………………………………………24
4.3.2 Coniferous Tree…………………………………………31
4.3.3 Reflected by other canopy………………………………37
4.4 Discussion………………………………………………………38
4.4.1 Comparison of the experimental parameters……………38
4.4.2 Comparison of broadleaf tree and coniferous tree………39
4.4.3 Error before first wave…………………………………40
4.4.4 Error after first wave……………………………………42
4.4.5 Time cost……………………………………………44
Chapter 5 Conclusions and future works ………………………………45
References…………………………………………………………47
參考文獻 [1] Filin, S., & B. Csatho, 2000. An Efficient Algorithm for the Synthesis of Laser Altimeter Waveforms, BPRC technical report 2000-02, 27 pages.
[2] Wagner, W., Ullrich, A., Melzer, T., Briese, C., Kraus, K., 2004. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35, 201–206 (Part B3).
[3] Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U. and Heipke, C., 2009. A stochastic approach for modelling airborne lidar waveforms. In: F. Bretar, M. Pierrot- Deseilligny and G. Vosselman (eds), Laserscanning 2009 – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII, Part 3/W8, pp. 201–206.
[4] Duong, H., Pfeifer, N., Lindenbergh, R., 2006. Full waveform analysis: ICESAT laser data for land cover classification. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 7)
[5] Sun, G., Ranson, K., 2000. Modeling lidar returns from forest canopies. IEEE Transactions on Geoscience and Remote Sensing 38 (6), 2261_2626.
[6] M. Burgin, D. Clewley, R. M. Lucas, and M. Moghaddam, “A generalized radar backscattering model based on wave theory for multilayer multispecies vegetation,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4832–4845, Dec. 2011.
[7] Wagner, W., Ullrich, A., Ducic, V., Melzer, T., Studnicka, N., 2006. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 60 (2), 100–112.
[8] P. Liang, M. Moghaddam, L. E. Pierce, and R. M. Lucas, “Radar backscattering model for multilayer mixed-species forests,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2612–2626, Nov. 2005.
[9] Wagner, W., 2010. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J. Photogramm. 65 (6), 505–513.
[10] Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Pierrot-Deseilligny, M., Puech, W., 2007. Processing full-waveform lidar data: Modelling raw signals. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 3/W52), 102_107.
[11] F. Bretar, A. Chauve, C. Mallet, and B. Jutzi, "Managing full waveform lidar data: A challenging task for the forthcoming years, "International Archives of the Photogram- metry, Remote Sensing and Spatial Information Sciences, vol. 37, pp. 415-420, 2008.
[12] 機載激光雷達森林參數估測方法研究. 中國林科院, 2009.
[13] 王滙智, 完整波形分析對於提升空載光達系統定位精度之研究. 國立臺灣大學碩士論文, 2007.
[14] Abshire, J. M., J.F. McGarray, L.K. Pacini, J.B. Blair, & C.G. Elman, 1994. Laser Altimetry Simulator version 3.0, User’s Guide, NASA Technical Memorandum 104588, 66 pages.
[15] Filin, S., and B. Csatho, 2000. An Efficient Algorithm for the Synthesis of Laser Altimetry Waveforms, Byrd Polar Research Center Technical Report 2000-02, 27 p.
[16] Suits, G.H., The Calculation of the Directional Reflectance of a Vegetative Canopy, Remote Sensing of Environment, Vol. 2, 1972, pp. 117-125.
[17] Kazemipour, F., Launeau, P., and V. Meleder, , Hyperspectral characterization of microphytobenthic biofilms, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS apos;09. First Workshop on Volume , Issue , 2009 Page(s):1-4.
指導教授 任玄(Hsuan-Ren) 審核日期 2012-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明