博碩士論文 996206006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.207.102.38
姓名 張宛婷(Wang-Ting Chang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 台灣沿海表面風之週期特性
(On the diurnal and semidiurnal periodicity of coastal wind around Taiwan)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 微波雷達與CCD影像分析於潮間帶地形測量之應用
★ The directional spreading of surface wave in the shallow water zone★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
★ 平緩海灘表層含水量變化特性研究★ 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海岸地區為海-氣-陸之交界,此區域陸源物質(包括沉積物、營養鹽與汙染物等)、熱量和動量傳遞及交互作用劇烈。陸源物質在海岸及河口傳輸主要受潮流、風驅流與密度流的控制,風驅流主要受風吹海面所引起,由此可知風為影響海岸地區陸源物質傳輸與擴散主要機制之一,風場特性會直接反應於海面上,海洋與大氣之間熱量傳遞也受表面風影響,海氣交互作用與氣候變遷息息相關,了解表面風場對海岸地區的影響,對海岸工程施工(如海洋平台、海洋能源利用等)有所裨益。
從實際層面上,再生能源的推動成為各國開發的重點。近年來離岸式風力電廠成為風能發電發展的新趨勢,台灣土地面積狹小,能發展成陸上風力電廠地區有限,故發展離岸式風力電廠為台灣開發再生能源的重要政策之一。每日風能的週期性振盪會影響發電效率,Capacity Factor取決於風速大小,風速越大其值越高,Capacity Factor越高代表發電效率越好且發電成本越低,了解台灣周邊海域表面風場的分布,有利預估潛在風能與年發電量,本研究希望藉由現有觀測風場資料,探討表面風場於近岸海洋地區之特性,以助於離岸風能發電。
由前人研究得知於表面摩擦力較低的高空中與海洋表面,風場有顯著的日週期與半日週期現象,在陸地上因陸地表面粗糙度大,僅存在日週期現象。海陸風與大氣潮皆為引起日週期與半日週期風場現象之成因,台灣海岸,海陸交界上,表面風場之日週期特性,實在值得探討。因此,本研究目的針對台灣周邊海域離岸風能發電之應用,描述海岸表面風速每日週期性振盪強度與特性,及其於季節上與空間上的變化特性,進一步探討主導台灣周邊海域日週期與半日週期風場之成因與機制。
經研究結果顯示,台灣周邊海域表面風存在日週期與半日週期現象,日週期與半日週期風速變化於季節上無顯著差異,於空間上大致區分為西北岸、西南岸與東岸;以瞬時Rotary spectrum考慮風速橢圓特性,台灣海域不論東、西岸日週期振盪振幅約為半日週期之2-3倍,日週期與半日週期振盪強度以低緯度海岸較高,其次為東岸,西岸最小;日週期風速橢圓長軸方向統計結果,新竹與永安站特性相似,大鵬灣與小琉球相似,其餘之外各測站均呈現差異甚大,可能與地形及表面摩擦力差異有關;依據全日週期風速橢圓長軸方位之統計特性,定性上大氣潮對於日週期特性不可忽略,定量上尚有待進一步研究。
摘要(英) Coastal zone is the interface among the ocean, atmosphere and the land, where, the flux of terrestrial (i.e. sediment, nutrients and pollutants etc.), heat and momentum transfer take. The transportation and dispersion of terrestrial material in coastal waters and estuaries are mainly controlled by tidal current, wind-driven current and density flow, among them, the wind-driven current that incurred by the wind stress is the dominate mechanism. As the characteristics of wind variation will bring direct impacts to the ocean surface, understanding the oscillation of surface wind fields on the coastal waters are essential to the realization of nature environments as well as the application such as the coastal engineering and marine energy utilization).
From the viewpoint of practical application, renewable energy conversion had become an increasing source in recent years. Due to the restriction of limited land area of, Taiwan island, the utilization of off-shore wind energy had gained the importance. Temporal oscillation of wind speed in various scale will affect the Capacity Factor(CF), for which, small CF will result in high cost/benefit ratio. The aim of this study is to use existing observation wind data, explore the characteristics of the temporal oscillation of coastal wind fields around Taiwan waters, with the hope to assist the off-shore wind power generation.
Previous studies had shown that the surface wind exhibit significant diurnal and semidiurnal periodicity, due to several mechanisms such as atmospheric tide and land-sea breeze. Hence, the aim of this article is twofold. First, in order to fulfill the needs from off-shore wind farms application around Taiwan, the statistical descriptions of the coastal wind speed oscillation and associated characteristics of seasonal and spatial variations are discussed. Second, the causes and mechanisms of the diurnal and semidiurnal periodicity wind around Taiwan waters are investigated using short-time rotary spectral analysis.
The results show that surface wind features diurnal oscillation around Taiwan waters. There was a significant seasonal difference of the intensity of diurnal and semidiurnal wind. The categorization of the coastal zone with respect to surface wind can be divided into several regions, i.e. the northwestern coast, southwest coast and east coast. Consider the wind ellipses features, the diurnal oscillation amplitude is 2-3 times higher than semidiurnal cycle, the low-latitude coastal has higher oscillation intensity, followed for the east coast, west coast is smallest. The statistics of the direction of major axis of the diurnal wind ellipses, Hsichu and Yung-an feature similar characteristic, Dapeng Bay and Xiao Liuqiu also have same characteristic, the other station showed descrepencies, which might owing to the differences in terrain and surface friction. As a whole, land-sea breeze is the dominating factor to the diurnal wind and the effects from atmosphere tide cannot be ignored.
關鍵字(中) ★ 海陸風
★ 大氣潮
★ 風場週期特性
關鍵字(英) ★ periodicity of wind.
★ Land-Sea breeze
★ Atmospheric tides
論文目次 摘 要 I
Abstract II
誌 謝 IV
圖 目 錄 VI
表 目 錄 X
符號說明 XI
第一章 海岸地區表面風場之特性 1
1-1 近岸表面風場之重要性 1
1-2 表面風場週期特性 3
1-3 日週期與半日週期風場成因 5
1-3-1 海陸風 5
1-3-2 大氣潮 5
1-4 研究目的 7
第二章 台灣周邊海域表面風場日週期與半日週期特性 8
2-1 觀測資料來源 8
2-2 資料時序列特性 11
2-3 自相關分析及其結果討論 12
第三章 日週期與半日週期風速變化之時空分布 21
3-1分析方法 21
3-1-1 連續小波轉換 21
3-1-2 顯著水平理論 23
3-2 季節與空間之變化 25
3-3 台灣東、西海岸之差異 29
3-2-1 變異數分析與多重比較 29
3-2-2 各海岸區段區分結果 30
第四章 日週期與半日週期風場振盪成因討論 35
4-1 旋轉能譜法 36
4-2 主導機制討論 38
第五章 結論 55
參考文獻 57
附 錄 A 59
附 錄 B 72
參考文獻 [1] Lindzen, R. S.,1990: Dynamics in Atmospheric Physics, Cambridge University Press.
[2] The European wind energy association (EWEA), 2009: Wind energy – the fact, EWEA.
[3] 吳宗正,1999:「變異數分析-理論與應用」,5版,華泰文化。
[4] 楊惠齡,林明德,2006: 「生物統計學」,5版,新文京開發出版股份有限公司。
[5] 盛揚帆,1986:「緯度對海陸風環流之影響」,國立中央大學大氣物理研究所碩士論文。
[6] 徐賢能,1992:「以VHF雷達觀測大氣潮汐波及其性質之研究」,國立中央大學物理與天文研究所碩士論文。
[7] 張美玉,1992:「海陸風對邊界層結構及汙染物擴散之影響」,國立中央大學大氣物理研究所碩士論文。
[8] 孟德梅,1993:「汙染物質在海陸風環流下的輸送與擴散之三維模式」,國立中央大學大氣物理研究所碩士論文。
[9] 傅文俊,高家俊,1994:「應用小波理論分析海洋波浪」,中華民國第16屆海洋工程研討會論文集。
[10] 李昀叡,2003:「獨立與非獨立性資料之多重比較」,國立政治大學統計研究所碩士論文。
[11] 郭博堯,2003:「我國天然環境限制風力發電發展」,國政分析專刊,9。
[12] 陳慶昌,嚴明鉦,王世宇,2006:「從玉山看大氣壓力變化」,大氣科學,34,291-308。
[13] 陳美蘭,2007:「風能應用技術」,物理雙月刊,29。
[14] 經濟部能源局,2008:「風能整體開發推動計畫-第三年度」,經濟部能源科技研究發展計畫。
[15] Aspliden, C.I., Lynn, A., 1977: Diurnal and semidiurnal low-level wind cycles over a tropical island, Boundary-layer meteorology, 12, 187-199.
[16] Crew, H., Plutchak, N., 1974: Time varying rotary spectra, Journal of the oceanographical society of Japan, 30, 61-66.
[17] Deser, Clara, Smith, Catherine A, 1998: Diurnal and Semidiurnal variances of the surface wind field over the Tropical Pacific Ocean, Journal of climate, 11, 1730-1748.
[18] Gonella, Joseph, 1972: A rotary-component method for analyzing meteorological and oceanographic vector time series, Deep-sea research, 19, 833-846.
[19] Haurwitz, B., Cowley, Ann D., 1973: The diurnal and semidiurnal barometric oscillations, global distribution and annual variation, Pageoph, 13, 193-222.
[20] Hayashi, Yoshikazu, 1979: Space-time spectral analysis of rotary vector series, Journal of the atmospheric sciences, 35, 757-766.
[21] Holton, James R., 1967: The diurnal boundary layer wind oscillation above sloping terrain, Tellus XIX, 2, 199-205.
[22] Hunter, Eli et al., 2007: Spatial and temporal variability of diurnal wind forcing in the coastal ocean, Geophysical research letters, 34, L03607.
[23] Isaac Van der Hoven, 1956: Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour, Journal of Meteorology, 14, 160-164.
[24] Johnson, N., 2008: Wind farms: the consistency of issue, University of Edinburgh school of geosciences.
[25] Mooers, Christopher N. K., 1973: Instruments and methods: a technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants,Deep-sea research, 20, 1129-1141.
[26] O’brien, James J., Pillsbury, R. D., 1974: Notes and correspondence: rotary wind spectra in a sea breeze regime, Journal of applied meteorology, 13, 820-825.
[27] Pidwirny, M., 2006: Local and regional wind systems, Fundamentals of Physical Geography, 2nd Edition. (http://www.physicalgeography.net/fundamentals/7o.html)
[28] Renewable energy research laboratory, University of Massachusetts at Amherst, 2009: Wind power : Capacity Factor, Intermittency, and what happens when the wind doesn’t blow?, Community Wind Power Fact Sheet #2a.
[29] Rolando, S. B. and Simon, W., 2011: Study of the UK offshore wind resource: Preliminary results from the first stage of the SUPERGEN wind 2 project resource assessment, European wind energy conference and exhibition.
[30] Simpson, J.H. et al., 2002: Forced oscillations near the critical latitude for diurnal-inertial resonance, American meteorological society, 177-187.
[31] Stockwell, R. G., Large, W. G., Milliff, R. F., 2004: Resonant inertial oscillations in moored buoy ocean surface winds, Tellus, 56A, 536-547.
[32] Taghizadeh, S. R., 2000: Digital signal processing part3: discrete-time signals & systems case studies, School of communications technology and mathematical sciences, university of north london.
[33] Thrane, P., 1958: The Diurnal and the Semidiurnal Atmospheric Solar Tide, Tellus X, 4, 415-429.
[34] Torrence Christopher, Compo Gilbert P., 1998: A practical guide to wavelet analysis, American meteorological society, 79, 61-78.
[35] Wang, W.S., Ding, J., Xiang H. L., 2002: Application and prospect of wavelet analysis in hydrology.
[36] Zhang, X., Dimarco, S. F., Smith, D. C., Howard, M. K., Jochens, A. E., Hetland, R. D., 2009: Near-resonant ocean response to sea breeze on a stratified continental shelf, American meteorological society, 39, 2137-2155.
指導教授 錢樺(Hwa Chien) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明