博碩士論文 996403003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.238.174.50
姓名 畢可為(Gilbert Pi)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 徑向行星際磁場事件之特性及其對磁層之影響
(The characteristic of the radial IMF events and its inference for the magnetosphere)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
★ 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 長持續時間之徑向行星際磁場事件在行星際空間中並不常見,且屬於相對平靜之太陽風條件,但是其特殊之磁場指向,會導致磁層產生許多特殊的結構。本篇論文利用OMNI資料庫以及THEMIS任務所提供之觀測資料,針對此類事件在太陽風中之特性以及對磁層頂附近結構之影響作了完整之討論。長持續時間之徑向行星際磁場的發生頻率與太陽活動週期並沒有明顯關聯。當徑向行星際磁場事件發生時,其結構會在徑向方向延伸,造成整個結構擴張,同時也使得磁場強度、密度以及溫度下降。與年平均值相比,其下降比例分別為17.5%、21.9%以及35.8%。而太陽風動壓也下降27.8%。由於動壓的下降會使得磁層頂往外移動。另一方面,當行星際磁場為徑向時,快速磁聲波之馬赫數也會較低,因此,船艏震波也會因而向內移動。徑向行星際磁場穿過船艏震波後,BY與BZ都會被明顯放大,並且BX會隨著電漿流慢慢轉向另外兩個分量,進而包覆整個磁層頂,造成磁層頂外之磁場指向呈現南北不對稱之結構。此一不對稱之結構亦導致磁重聯發生之位置不對稱,磁重聯發生後,磁鞘中的磁場結構會被改變,造成磁層頂外受到北向磁場影響的區域變大,同時產生外低緯度邊界層。
摘要(英) Long-duration radial interplanetary magnetic field (IMF) events are one of the special solar wind conditions when the orientation of the IMFis aligned with the solar wind velocity. The radial IMF events usually are regarded as quiet solar conditions, but the unique orientation of the IMF can lead to some consequences in the magnetospheric system. In this thesis, we used the OMNI and THEMIS data to investigate the characteristics of the radial IMF events and its influence on the magnetospheric system. During the events, the IMF magnitude, solar wind speed, density, and especially its temperature are depressed in comparison with their yearly averages. In contrast to previous studies, we have found that the total time of the radial IMF per year does not change with solar activity. MHD simulation models failed to predict the location of the magnetopause under the radial IMF condition. A part of the inaccuracy is due to the use of assumed solar wind parameters in the simulations. Here we provide MHD modelers with the real solar wind parameters for simulations of the radial IMF. When the magnetic field transited through the bow shock, we compared the simultaneous data from OMNI database, THEMIS-B in the solar wind, and THEMIS-C in the magnetosheath to investigate the relationship between the magnetic field structures in the solar wind and in the magnetosheath. We found that the magnetic field will be enhanced in all components, especially in By, under the radial IMF conditions. After that, Bx will divert to the Y and Z components, but the diversion to By will be larger than that to Bz in this case. In the magnetosheath region near the magnetopause, the magnetic field will drape around the magnetopause, having an asymmetric magnetic field orientation in different hemispheres. It will lead to an asymmetric location of reconnection under radial IMF conditions and rearrange the structure of the magnetic field near the magnetopause. Once the reconnection takes place, the plane separating different orientations of the magnetic field in the magnetosheath shifts. It will lead to an enlargement of the region near the magnetopause affected by the positive magnetosheath Bz and enhance the positive Bz in the magnetosheath near the subsolar magnetopause.
關鍵字(中) ★ 太陽風
★ 徑向行星際磁場
★ 磁場結構
★ 磁層頂
關鍵字(英) ★ solar wind
★ radial IMF
★ magnetic field structure
★ magnetopause
論文目次 摘要…………………………………………………………………….i
英文摘要………………………………………………………………ii
誌謝……………………………………………………………………iii
目錄……………………………………………………………………iv
圖目錄………………………………………………………………….vi
表目錄……………………………………………………………....... ix
第一章 緒論…………………………………………………………..1
1.1 日地關係介紹…………………………………………...3
1.2 徑向行星際磁場事件…………………………………...8
1.3 徑向行星際磁場對地球磁層的影響…………………..11
第二章 資料來源與徑向行星際磁場事件之定義……………….....13
2.1 OMNI資料庫……………………………………………13
2.2 THEMIS任務……………………………………………14
2.3徑向行星際磁場定義……………………………………15
第三章 徑向行星際磁場事件中的電漿特性………………………..19
3.1徑向行星際磁場事件之發生機率……………………….21
3.2各項太陽風參數與其隨太陽周期的變化……………….24
3.3徑向行星際磁場之太陽風條件及其對船艏震波
和磁層頂位置的影響……………………………………30
第四章 船艏震波對徑向行星際磁場事件的影響…………………..33
4.1 2008年9月24日之徑向行星際磁場事件………………33
4.2船艏震波上下游之磁場結構……………………………39
4.3徑向行星際磁場在磁鞘中的變化………………………46
第五章 徑向行星際磁場於地球磁層頂附近之結構與其對
地球磁層的影響……………………………………………..51
5.1磁層頂附近的磁場結構…………………………………51
5.2徑向行星際磁場下的磁層頂磁重聯事件………………53
5.3磁層頂附近磁場的改變…………………………………55
5.4低緯度邊界層的改變…………………………………….69
第六章 結論…………………………………………………………..77
參考文獻………………………………………………………………..81
附錄 長持續時間之徑向行星際磁場事件清單………………………91
參考文獻 Antonova, E. E., M. S. Pulinets, M. O. Riazantseva, et al. (2012),
Turbulence in the magnetosheath and the problem of plasma penetration inside the magnetosphere, Chapter 18, Exploring the solar wind, ed. M. Lazar, INTECHOPEN.COM, ISBN 978-953-51-0339-4, pp. 417-438..
Auster, H. u., et al. (2008), The Themis mission, Space Sci.Rev., 141,
5-34, doi:10.1007/s11214-008-9336-1.
Baumjohamm, W., and R. A. Treumann (1996), Basic space plasma
physics,Chapter 8, ISBM 1-86094-017-X, p179-181
Bogdanova, Y. V., et al. (2008), Formation of the low-latitude boundary
layer and cusp under the northward IMF: Simultaneous observations by Cluster and Double Star, J. Geophys. Res., 113, A07S07, doi:10.1029/2007JA012762.
Chao, J.K., Wu, D.J., Lin, C.-H., et al. (2002), Models for the size and
shape of the earth’s magnetopause and bow shock, Cospar Colloq.
Ser., 12 (C), 127-135. doi:10.1016/S0964-2749(02)80212-8.
Crooker, N. U. (1979), Dayside merging and cusp geometry, J. Geophys.
Res., 84, 951-959, doi: 10.1029/JA084iA03p00951.
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zone,
Phys. Rev. Lett., 6, 47-48, doi:10.1103/PhysPevLett.6.47.
Dungey, J. W. (1963), The structure of the ionosphere, or adventures in
velocity space, in Geophysics: The Earth’s Environment, edited by C. Dewitt, J. Hieblot, and A. Lebeau, pp. 503-550, Gordon and Breach New York.
Dušík, Š., G. Granko, J. Šafránková, Z. Němeček, and K. Jelínek (2010),
IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, doi:10.1029/2010GL044965.
Eastman, T. E. and E. W. Hones Jr. (1979), Characteristics of the
magnetospheric boundary layer and magnetopause layer as observed by IMP 6, J. Geophys. Res.,, 84, 2019, doi:10.1029/JA084iA05p02019.
Eastman, T. E., E. W. Hones Jr., S. J. Bame, and J. R. Asbridge (1976),
The magnetospheric boundary layer: Site of plasma, momentum and energy transfer from the magnetosheath into the magnetosphere, Geophys, Res. Lett., 3, 685-688, doi: 10.1029/GL003i011p00685.
Elliott, H. A., C. J. Henney, D. J. McComas, C. W. Smith, and B. J.
Vasquez (2012), Temporal and radial variation of the solar wind temperature-speed relationship, J. Geophys. Res., 117, A09102, doi:10.1029/2011JA017125
Engebretson, M. J., N. Lin, W. Baumjohann, et al. (1991), A comparison
of ULF fluctuations in the solar wind, magnetosheath, and dayside magnetosphere: 1. Magnetosheath morphology, J. Geophys. Res., 96(A3), 3441-3454, doi:10.1029/90JA02101.
Fairfield, D. H. (1967), The ordered magnetic field of the magnetosheath,
J. Geophys. Res., 72(23), 5865–5877, doi:10.1029/JZ072i023p05865.
Fairfield, D. H., H. C. Iver, M. D. Desch, A. Szabo, A. J. Lazarus, and M.
R. Aellig (2001), The location of low Mach number bow shocks at Earth, J. Geophys. Res., 106(A11), 25361, doi:10.1029/2000JA000252.
Fear, R. C., A. N. Fazakerley, C. J. Owen, A. D. Lahiff, E. A. Lucek, A.
Balogh, L. M. Kistler, C. Mouikis, and H. Reme (2005), Cluster observations of boundary layer structure and a flux transfer event near the cusp, Ann. Geophys., 23, 2605-2620, doi:hal-00329433.
Foullon, C., C. J. Farrugia, A. N. Fazakerley, C. J. Owen, F. T. Gratton,
and R. B. Torbert (2008), Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause, J. Geophys. Res., 113, A11203, doi: 10.1029/2008JA013175.
Fuselier, S. A., M. Lockwood, T. G. Onsager, and W. K. Peterson (1999),
The source population for the cusp and cleft/LLBL for southward IMF, Geophys. Res. Lett., 26, 12 1665-1668, doi:10.1029/1999GL900354.
Gazis, P. R., and A. J. Lazarus (1982), Voyager observations of solar
wind proton temperature: 1-10 AU, J. Geophys. Res., 9, 4, 431, doi: 10.1029/GL009i004p00431.
Gosling, J. T., and R. M. Skoug (2002), On the origin of radial magnetic
fields in the heliosphere, J. Geophys. Res., 107(A10), 1327, doi:10.1029/2002JA009434.
Hapgood, M. and M. Lockwood (1995), Rapid changes in LLBL
thickness, Geophys. Res. Lett., 22, 77, doi:10.1029/94GL02835.
Hietala, H., T. V. Laitinen, K. Andréeová, R. Vainio, A. Vaivads, M.
Palmroth, T. I. Pulkkinen, H. E. J. Koskinen, E. A. Lucek, and H. Rème (2009), Supermagnetosonic jets behind a collisionless quasiparallel Shock, Phys. Rev. Lett. 103, 245001, doi:10.1103/PhysRevLett.103.245001.
Hones, E. W., Jr., J. R. Asbridge, S. J. Bame, M. D. Montgomery, S.
Singer, and S. I. Akasofu (1972), Measurements of magnetotail plasma flow made with Vela 4B, J. Geophys. Res., 77, 5503, doi: 10.1029/JA077i028p05503.
Huang T., H Wang, J.-H. Shue, L. Cai, and G. Pi (2015), The dayside
magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison, Ann Geophys., 33, 437-448, doi:10.5194/angeo-33-437-2015.
Hundhausen, A. J. (1995), The Solar Wind, in Introduction To Space
Physics, edited by M. G. Kivelson and C. T. Russell, pp.91-128, Cambridge University Press, Cambridge, U.K.
Jelínek, K., Z. Němeček, J. Šafránková, J.-H. Shue, A. V. Suvorova, and
D. G. Sibeck (2010), Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations, J. Geophys. Res., 115, A10203, doi:10.1029/2010JA015345.
Jones, G. H., A. Balogh, and R. J. Forsyth (1998), Radial heliospheric
magnetic fields detected by ulysses, Geophys. Res. Lett., 25(16), 3109, doi: 10.1029/98GL52259.
King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.
McFadden, J. P., C. W. Carlson, D. Larson, J. Bonnell, F. S. Mozer, V.
Angelopoulos, K.-H. Glassmeier, and U. Auster (2008), THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277-302, doi:10.1007/s11214-008-9440-2.
Merka, J., A. Szabo, J. Šafránková, and Z. Němeček (2003), Earth′s bow
shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison, J. Geophys. Res., 108(A7), 1269, doi:10.1029/2002JA009697.
Midgley, J. E., and L. Davis Jr. (1963), Calculation by a moment
technique of the perturbation of the geomagnetic field by the solar wind, J. Geophys. Res., 68(18), 5111–5123, doi:10.1029/JZ068i018p05111.
Němeček, Z., J. Šafránková, O. Kruparova, L. Přech, K. Jelínek, Š.
Dušík, J. Šimůnek, K. Grygorov, and J.-H. Shue (2015), Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations, J. Geophys. Res. Space Physics, 120 (5): 3475-3488, doi:10.1002/2014JA020308.
Neugebauer, M., R. Goldstein and B. E. Goldstein (1997), Features
observed in the trailing regions of interplanetary clouds from coronal mass ejections, J. Geophys. Res., 102(A9), 19743, doi:10.1029/97JA01651.
Omidi, N., J. P. Eastwood, and D. G. Sibeck (2010), Foreshock bubbles
and their global magnetospheric impacts, J. Geophys. Res., 115, A06204, doi:10.1029/2009JA014828.
Orlove, S. T., C. W. Smith, B. J. Vasquez, N. A. Schwadron, R. M.
Skoug, T. H. Zurbuchen, and L. Zhao (2013), Intervals of Radial Interplanetary Magnetic Fields at 1 AU, Their Association with Rarefaction Regions, and Their Apparent Magnetic Foot Points at the Sun, .Astrophys. J., 774, 15, doi:10.1088/0004-637X/774/1/15.
Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic
fields, Astrophys. J., 128, 664, doi:10.1086/146579.
Petrinec, S. M. (2016), Draping of strongly flow-aligned interplanetary
magnetic field about the magnetopause, Adv. Space Res., In Press, doi:10.1016/j.asr.2015.10.001
Pi, G., J.-H. Shue, J.-K. Chao, Z. Němeček, J. Šafránková, and C.-H. Lin
(2014), A reexamination of long-duration radial IMF events, J. Geophys. Res. Space Physics, 119, 7005-7011, doi:10.1002/2014JA019993.
Pi, G., J.-H. Shue J.-S. Park, J.-K. Chao, Y.-H. Yang, and C.-H. Lin
(2016), A comparison of the IMF structure and the magnetic field in the magnetosheath under the radial IMF conditions, Adv. Space Res., In Press, doi:10.1016/j.asr.2015.11.012.
Pulinets, M.S., M. O. Ryazantsev, E. E. Antonova, and I. P. Kirpichev
(2012), Geomagn. Aeron. 52, 730. doi:10.1134/S0016793212060084.
Pulinets M.S., E.E.Antonova, M. O. Riazantseva, et al. (2014),
Comparison of the magnetic field before the subsolar magnetopause with the magnetic field in the solar wind before the bow shock, Advances in Space Research, v. 54, Issue 4, p.604 - 616. DOI:10.1016/j.asr.2014.04.023.
Robbins, S., C. J. Henney, and W. Harvey, (2006) Solar wind forcasting
with coronal holes, Solar Phys, 233, 265-276, doi:10.1007/s11207-006-0064-y.
Šafránková, J., M. Hayosh, O. Gutynska, et al. (2009), Reliability of
prediction of the magnetosheath BZ component from interplanetary magnetic field observations, J. Geophys. Res., 114, A12213, doi:10.1029/2009JA014552.
Šafránková, J., Z. Němeček, L. Přech, J. Šimůnek, D. G. Sibeck, and
J.-A. Sauvaud (2007), Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation, J. Geophys. Res., 112, A07201, doi:10.1029/2006JA011889.
Samsonov, A. A., Z. Nemecek, J. Safrankova and K. Jelinek (2012), Why
does the subsolar magnetiopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res., 177, A05221, doi:10.1029/2011JA017429.
Shue, J.-H., Chao, J.K., Fu, H.C., et al. (1997), A new functional form to
study the solar wind control of the magnetpause size and shape, J.
Geophys. Res., 102 (A5), 9497-9511, doi:10.1029/97JA00196.
Shue, J.-H., J.-K. Chao, P. Song, J. P. McFadden, A. Suvorova, V.
Angelopoulos, K. H. Glassmeier, and F. Plaschke (2009), Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, doi:10.1029/2009GL039842.
Sibeck, D. G., and V. Angelopoulos (2008), THEMIS science objectives
and mission phases, Space Sci. Rev., 141, 35–59, doi:10.1007/s11214-008-9393-5
Slavin, J. A., A. Szabo, M. Peredo, R. P. Lepping, R. J. Fitzenreiter, K.
W. Ogilvie, C. J. Owen and J. T. Steinberg (1996), Near-simultaneous bow shock crossings by WIND and IMP 8 on December 1, 1994, Geophys. Res. Lett., 23(10), 1207, doi: 10.1029/96GL01351.
Song, P., D. L. DeZeeuw, T. I. Gombosi, C. P. T. Groth, and K. G.
Powell (1999), A numerical study of solar wind—magnetosphere interaction for northward interplanetary magnetic field, J. Geophys. Res., 104(A12), 28361–28378, doi:10.1029/1999JA900378.
Song, P., R. C. Elphic, C. T. Russell, J. T. Gosling, and C. A. Cattell
(1990), Structure and properties of the subsolar magnetopause for northward IMF: ISSE observations, J. Geophys. Res., 95, 6375-6387, doi:10.1029/JA095iA05p06375.
Song, P., and C. T. Russell (1992), Model of the formation of the
low-latitude boundary layer for strongly northward interplanetary magnetic field, J. Geophys. Res., 97(A2), 1411–1420, doi:10.1029/91JA02377.
Song, P. and C. T. Russell (1999), Time series data analyses in space
physice, Space Science Reviews, 87, 387. doi:10.1023/A:1005035800454
Song, P., C. T. Russell, and M. F. Thomsen (1992), Slow mode transition
in the frontside magnetosheath, J. Geophys. Res., 97(A6), 8295–8305, doi:10.1029/92JA00381.
Spreiter, J. R., and A. W. Rizzi (1974), Aligned magnetohydrodynamic
solution for solar wind flow past the earth′s magnetosphere, Acta Astronaut., 1, 15, doi:10.1016/0094-5765(74)9006-X.
Sundkvist, D., A. Retino, A. Vaivads, and S. D. Bale (2007), Dissipation
in turbulent plasma due to reconnection in thin current sheets, Phys. Rev. Lett, 99(2), 025004, doi:10.1103/PhsRevLett.9.025004.
Suvorova, A. V., and A. V. Dmitriev (2015), Magnetopause inflation
under radial IMF: Comparison of models, Earth and Space Science, 2, doi:10.100/2014EA000084.
Suvorova, A. V., J.-H. Shue, A. V. Demitriev, D. G. Sibeck, J. P.
McFadden, H. Hasegawa, K. Ackerson, K. Jelinek, J. Safrankova and Z. Nemecek (2010), Magnetopause expensions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observation, J. Geophys. Res., 115, A10216, doi:10.1029/2010JA015404.
Tang, B. B., C. Wang, and W. Y. Li (2013), The magnetosphere under
the radial interplanetary magnetic field: A numerical study, J. Geophys. Res. Space Physics, 118, 7674-7682, doi:10.1002/2013JA019155.
Tkachenko, O., Š. Dušík, J. Šafránková, and Z. Němeček (2010), Spatial
profile of the LLBL: Multispacecraft THEMIS observations, in Twelfth International Solar Wind Conference, AIP Conf. Proc., vol. 1216, edited by M. Maksimovic et al., 487–490, Am. Inst. of Phys., Melville, New York, doi:10.1063/1.3395909.
Totten, T. L., and J. W. Freeman (1995), An empirical determination of
the polytropic index for the free streaming solar wind using Helio 1 data, J. Geophys. Res., 100 (A1), 13, doi:10.1029/94JA02420.
Tsyganenko, N. A., and D. Stern (1996), Modeling the global magnetic
field of the large-scale Birkeland current systems, J. Geophys. Res., 101, 27,187–27, doi: 10.1029/96JA02735.
Watari, S., M. Vandas, and T. Watanabe (2005), Solar cycle variation of
long-duration radial interplanetary magnetic field events at 1 AU, J. Geophys. Res., 110, A12102, doi:10.1029/2005JA011165.
Zhang, Q.-H., et al. (2012), Inner plasma structure of the low-latitude
reconnection layer, J. Geophys. Res., 117, A08205, doi: 10.1029/2012JA017622.
Zastenker, . N., M. N. Nozdrachev, Z. Němeček, et al. (2002),
Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with Spreiter models and motion of the structures, Planetary and Space Science, 50, 601-612, doi:10.1016/S0032-0633(0200039-9.
指導教授 許志浤(Jih-Hong Shue) 審核日期 2016-11-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明