博碩士論文 996404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:18.118.12.222
姓名 李唯祺(Wei-Ci Li)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 潮汐對近岸海水出滲量影響之模擬研究
(Numerical Study of Tide Influences on Submarine Groundwater Discharge)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了探討海水與地下水在沿海含水層海灘坡面上之交互作用關係,本研究考慮海水水體移動時對於底下含水層之影響。本研究以漲退潮時的潮汐波作為研究對象,並探討潮汐波通過海灘坡面時造成之壓力差對於坡面下地下水滲出現象之影響。本研究選用 HYDROGEOCHEM (Hydrologic Transport and Geochemical Reactions Model) 數值模式,以探討潮汐波對於一理想斜坡非飽和二維海岸含水層之地下水出滲率影響。研究中假設海灘坡面為無摩擦力平面,基於白努利定律(Bernolli’s equation),潮汐波通過時將會降低海灘坡面上的壓力,加上由於潮汐波傳遞速率較地下水流快上數倍,因此此效應便不可忽略。本研究考慮了數種情境以量化此效應對於海水出滲速率之影響,這些情境包括有海灘坡度、含水層水力傳導係數以及潮汐振幅等。研究結果顯示上部鹽水團的產生與消失和海灘坡面的出滲速度有關,而潮汐波的加入使潮間帶周圍的邊界出滲速度下降約50%,但低潮線以下區域的出滲速度則增加了約兩倍,出滲邊界往海移動的結果造成上部鹽水團體積增大並於使海水鹽楔移動至海洋邊界附近。
摘要(英) To investigate the interactions between seawater and groundwater in coastal aquifer, this study considered tide current may create pressure changes on interfaces of aquifer and seawater when tide falls and rises. A two-dimensional unsaturated aquifer was considered in this study, HYDROGEOCHEM (Hydrologic Transport and Geochemical Reactions Model) numerical model was employed to quantify the influences of ocean currents on output fluxes of Submarine Groundwater Discharge (SGD). Based on energy conservation equation (Bernolli’s equation), the pressure heads on beach surface will decreased by tidal currents. Due to the velocities of tidal currents are several orders of magnitudes greater than that of groundwater, this de are not negligible in this study. This study considered several scenarios to quantify the influences of tidal current on SGD, those scenarios including different beach slopes, hydraulic conductivity values and tide amplitudes. Simulation results show that the fate of Upper Saline Plume (USP) was relates to out flux rates on beach surface. Tide currents will decrease about 50% of out flux rates near intertidal zone and increase the out flux rates about 200% near seabed. This downstream movement of out flux point results in a larger volume of USP and retreat of SGD. Simulation results also show that relative to beach slope and hydraulic conductivity, tide amplitude is one of the factors to control the influences of tidal current on aquifer. The influences of tidal current will increases about 10% on out flux rate when the tide amplitude raising 0.5 meters.
關鍵字(中) ★ 近岸海水出滲
★ 潮汐波
★ HYDROGEOCHEM
★ 白努利定律
關鍵字(英) ★ SGD
★ Tide wave
★ HYDROGEOCHEM
★ Bernoulli’s equation
論文目次 一、緒論 1
1.1. 海淡水交界面 2
1.2. 潮汐對水體造成之影響 4
1.3. 地下水感潮振盪 7
1.4. 潮間帶內之流體行為 12
1.5. 海底地下水出滲 14
1.6. 海岸含水層污染傳輸行為 16
1.7. 水體與底床之交互作用 17
1.8. 研究目的 20
1.9. 論文架構 21
二、研究方法 22
2.1. 水流方程式 22
2.2. 傳輸方程式 23
2.3. 模式設定 24
2.4. 概念模式 25
2.5. 邊界條件 28
三、 結果與討論 34
3.1. 基礎案例 34
3.2. 潮汐時期所造成之影響 38
3.3. 海灘坡度之影響 43
3.4. 含水層水力傳導係數之影響 50
3.5. 潮汐振幅之影響 55
四、 結論與建議 61
4.1. 結論 61
4.2. 建議 62
References 63
參考文獻 [1] Huang F-K, M-H Chuang, GS Wang, H-D Yeh. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer. Journal of Hydrology. 530 (2015) 291-305, doi: http://dx.doi.org/10.1016/j.jhydrol.2015.09.032.
[2] Moore WS. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry. 65 (1999) 111-25, doi: http://dx.doi.org/10.1016/S0304-4203(99) 00014-6.
[3] Nielsen P. Tidal dynamics of the water table in beaches. Water Resources Research. 26 (1990) 2127-34, doi: http://dx.doi.org/10.1029/WR026i009p02127.
[4] Jiao JJ, Z Tang. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resources Research. 35 (1999) 747-51, doi: http:// dx.doi.org/10.1029/1998WR900075.
[5] Bratton JF. The three scales of submarine groundwater flow and discharge across passive continental margins. Journal of Geology. 118 (2010) 565-75, doi: http://dx.doi. org/10.1086/655114.
[6] Reilly TE, AS Goodman. Quantitative analysis of saltwater-freshwater relationships in groundwater systems—A historical perspective. Journal of Hydrology. 80 (1985) 125-60, doi: http://dx.doi.org/10.1016/0022-1694(85)90078-2.
[7] Andrew JB, DP Horn. Monitoring and modelling groundwater behaviour in sandy beaches. Journal of Coastal Research. 12 (1996) 630-40.
[8] Simmons CT, TR Fenstemaker, JM Sharp Jr. Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. Journal of Contaminant Hydrology. 52 (2001) 245-75, doi: http:// dx.doi.org/10.1016/S0169-7722(01)00160-7.
[9] Taniguchi M, WC Burnett, JE Cable, JV Turner. Investigation of submarine groundwater discharge. Hydrological Processes. 16 (2002) 2115-29, doi: http:// dx.doi.org/10.1002/hyp.1145.
[10] Horn DP. Beach groundwater dynamics. Geomorphology. 48 (2002) 121-46, doi: http://dx.doi.org/10.1016/S0169-555X(02)00178-2.
[11] Burnett WC, H Bokuniewicz, M Huettel, WS Moore, M Taniguchi. Groundwater and pore water inputs to the coastal zone. Biogeochemistry. 66 (2003) 3-33, doi: http:// dx.doi.org/10.1023/b:biog.0000006066.21240.53.
[12] Gallardo AH, A Marui. Submarine groundwater discharge: an outlook of recent advances and current knowledge. Geo-Marine Letters. 26 (2006) 102-13, doi: http:// dx.doi.org/10.1007/s00367-006-0021-7.
[13] Horn DP. Measurements and modelling of beach groundwater flow in the swash-zone: a review. Continental Shelf Research. 26 (2006) 622-52, doi: http://dx.doi.org/ 10.1016/j.csr.2006.02.001.
[14] Moore WS. The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science. 2 (2010) 59-88, doi: http://dx.doi.org/10.1146/annurev-marine-120308-081019.
[15] King JN. Analytical characterization of selective benthic flux components in estuarine and coastal waters. Treatise on Estuarine and Coastal Science. Academic Press, Waltham, 2011. pp. 397-423.
[16] Santos IR, BD Eyre, M Huettel. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science. 98 (2012) 1-15, doi: http://dx.doi.org/10.1016/j.ecss.2011.10.024.
[17] Werner AD, M Bakker, VEA Post, A Vandenbohede, C Lu, B Ataie-Ashtiani, et al. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources. 51 (2013) 3-26, doi: http://dx.doi.org/ 10.1016/j.advwatres.2012.03.004.
[18] Li H, J Jiao. Quantifying tidal contribution to submarine groundwater discharges: A review. Chinese Science Bulletin. 58 (2013) 3053-9, doi: http://dx.doi.org/10.1007/ s11434-013-5951-7.
[19] Rijn diLC, diJS Ribberink, iJJvd Werf, DJR Walstra. Coastal sediment dynamics: recent advances and future research needs. Journal of hydraulic research. 51 (2013) 475 - 93, doi: http://dx.doi.org/10.1080/00221686.2013.849297.
[20] Huette l, P Berg, JE Kostka. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science. 6 (2014) 23-51, doi: http:// dx.doi.org/10.1146/annurev-marine-051413-012706.
[21] Lanyon J, I Eliot, D Clarke. Groundwater-level variation during semidiurnal spring tidal cycles on a sandy beach. Marine and Freshwater Research. 33 (1982) 377-400, doi: http://dx.doi.org/10.1071/MF9820377.
[22] Cartwright N, TE Baldock, P Nielsen, D-S Jeng, L Tao. Swash-aquifer interaction in the vicinity of the water table exit point on a sandy beach. Journal of Geophysical Research: Oceans. 111 (2006) n/a-n/a, doi: http://dx.doi.org/10.1029/2005JC003149.
[23] Robinson C, A Brovelli, DA Barry, L Li. Tidal influence on BTEX biodegradation in sandy coastal aquifers. Advances in Water Resources. 32 (2009) 16-28, doi: http:// dx.doi.org/10.1016/j.advwatres.2008.09.008.
[24] Li W-C, C-F Ni, C-H Tsai, Y-M Wei. Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers. Environmental Monitoring and Assessment. 188 (2016) 1-18, doi: http://dx.doi.org/10.1007/s10661-016-5307-2.
[25] Bear J. Hydraulics of groundwater. Dover Publications, 2007.
[26] Hariga NT, TN Baranger, R Bouhlila. Land–sea interface identification and submarine groundwater exchange (SGE) estimation. Computers & Fluids. 88 (2013) 569-78, doi: http://dx.doi.org/10.1016/j.compfluid.2013.10.015.
[27] Hocking GC, LK Forbes. The lens of freshwater in a tropical island––2d withdrawal. Computers & Fluids. 33 (2004) 19-30, doi: http://dx.doi.org/10.1016/S0045-7930(03) 00035-5.
[28] Hubbert MK. The theory of ground-water motion. The Journal of Geology. 48 (1940) 785-944.
[29] Cooper HH. A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. Journal of Geophysical Research. 64 (1959) 461-7, doi: http:// dx.doi.org/10.1029/JZ064i004p00461.
[30] Lu C, Y Chen, C Zhang, J Luo. Steady-state freshwater–seawater mixing zone in stratified coastal aquifers. Journal of Hydrology. 505 (2013) 24-34, doi: http:// dx.doi.org/10.1016/j.jhydrol.2013.09.017.
[31] Back W, BB Hanshaw, TE Pyle, LN Plummer, AE Weidie. Geochemical significance of groundwater discharge and carbonate solution to the formation of Caleta Xel Ha, Quintana Roo, Mexico. Water Resources Research. 15 (1979) 1521-35, doi: http://dx.doi.org/10.1029/WR015i006p01521.
[32] Back W, BB Hanshaw, JS Herman, JN Van Driel. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology. 14 (1986) 137-40, doi: http://dx.doi.org/10.1130/0091-7613(1986)14<137:ddoapr>2.0. co;2.
[33] Chae G-T, S-T Yun, S-M Yun, K-H Kim, C-S So. Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea. Hydrological Sciences Journal. 57 (2012) 1672-83, doi: http://dx.doi.org/ 10.1080/02626667.2012.727421.
[34] Budd DA. Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from pore-water chemistry. Geological Society of America Bulletin. 100 (1988) 1260-70, doi: http://dx.doi.org/10.1130/0016-7606(1988)100<1260:atctdf> 2.3.co;2.
[35] Randazzo AF, JI Bloom. Mineralogical changes along the freshwater/saltwater interface of a modern aquifer. Sedimentary Geology. 43 (1985) 219-39, doi: http:// dx.doi.org/10.1016/0037-0738(85)90057-0.
[36] Randazzo AF, DJ Cook. Characterization of dolomitic rocks from the coastal mixing zone of the Floridan aquifer, Florida, U.S.A. Sedimentary Geology. 54 (1987) 169-92, doi: http://dx.doi.org/10.1016/0037-0738(87)90021-2.
[37] Chen B-F, S-M Hsu. Numerical study of tidal effects on seawater intrusion in confined and unconfined aquifers by time-independent finite-difference method. Journal of Waterway, Port, Coastal, and Ocean Engineering. 130 (2004) 191-206, doi: http:// dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:4(191).
[38] Zektser IS, LG Everett, RG Dzhamalov. Submarine groundwater. CRC Press, 2006.
[39] Bhattacharjya R, B Datta, Satish, M. Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. Journal of Hydrologic Engineering. 12 (2007) 273-82, doi: http://dx.doi.org/10.1061/(ASCE)1084-0699(2007) 12:3(273).
[40] Herzberg D. Die wasserversorgung einiger nordseebader. Munich, J Gasbeleucht Wasserversorg. 44 (1901) 815-9, 42-44.
[41] Naji A, AHD Cheng, D Ouazar. BEM solution of stochastic seawater intrusion problems. Engineering Analysis with Boundary Elements. 23 (1999) 529-37, doi: http:// dx.doi.org/10.1016/S0955-7997(99)00012-0.
[42] Henry HR. Effects of dispersion on salt encroachment in coastal aquifers. US Geological Survey1964. pp. C71-C84.
[43] Pinder GF, HH Cooper. A numerical technique for calculating the transient position of the saltwater front. Water Resources Research. 6 (1970) 875-82, doi: http://dx.doi.org/ 10.1029/WR006i003p00875.
[44] Lee C-H, RT-S Cheng. On seawater encroachment in coastal aquifers. Water Resources Research. 10 (1974) 1039-43, doi: http://dx.doi.org/10.1029/ WR010i005p01039.
[45] Segol G, GF Pinder, WG Gray. A Galerkin-finite element technique for calculating the transient position of the saltwater front. Water Resources Research. 11 (1975) 343-7, doi: http://dx.doi.org/10.1029/WR011i002p00343.
[46] Frind EO. Simulation of long-term transient density-dependent transport in groundwater. Advances in Water Resources. 5 (1982) 73-88, doi: http://dx.doi.org/ 10.1016/0309-1708(82)90049-5.
[47] Huyakorn PS, PF Andersen, JW Mercer, HO White. Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite element model. Water Resources Research. 23 (1987) 293-312, doi: http://dx.doi.org/10.1029/WR023i002p00293.
[48] Croucher AE, MJ O′Sullivan. The Henry problem for saltwater intrusion. Water Resources Research. 31 (1995) 1809-14, doi: http://dx.doi.org/10.1029/95WR00431.
[49] Held R, S Attinger, W Kinzelbach. Homogenization and effective parameters for the Henry problem in heterogeneous formations. Water Resources Research. 41 (2005) n/a-n/a, doi: http://dx.doi.org/10.1029/2004WR003674.
[50] Abarca E, J Carrera, X Sanchez-Vila, M Dentz. Anisotropic dispersive Henry problem. Advances in Water Resources. 30 (2007) 913-26, doi: http://dx.doi.org/ 10.1016/j.advwatres.2006.08.005.
[51] Voss CI, WR Souza. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Research. 23 (1987) 1851-66, doi: http://dx.doi.org/10.1029/ WR023i010p01851.
[52] Cartwright N, L Li, P Nielsen. Response of the salt–freshwater interface in a coastal aquifer to a wave-induced groundwater pulse: field observations and modelling. Advances in Water Resources. 27 (2004) 297-303, doi: http://dx.doi.org/10.1016/j. advwatres.2003.12.005.
[53] Sakr AS. Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeology Journal. 7 (1999) 155-60, doi: http://dx.doi.org/10.1007/s100400050187.
[54] Lu C, PK Kitanidis, J Luo. Effects of kinetic mass transfer and transient flow conditions on widening mixing zones in coastal aquifers. Water Resources Research. 45 (2009) n/a-n/a, doi: http://dx.doi.org/10.1029/2008WR007643.
[55] Das A, B Datta. Simulation of seawater intrusion in coastal aquifers: Some typical responses. Sadhana. 26 (2001) 317-52, doi: http://dx.doi.org/10.1007/bf02703403.
[56] Volker RE, KR Rushton. An assessment of the importance of some parameters for seawater intrusion in aquifers and a comparison of dispersive and sharp-interface modelling approaches. Journal of Hydrology. 56 (1982) 239-50, doi: http://dx.doi.org/ 10.1016/0022-1694(82)90015-4.
[57] Mualem Y, J Bear. The shape of the interface in steady flow in a stratified aquifer. Water Resources Research. 10 (1974) 1207-15, doi: http://dx.doi.org/10.1029/ WR010i006p01207.
[58] Abarca E, J Carrera, X Sanchez-Vila, CI Voss. Quasi-horizontal circulation cells in 3D seawater intrusion. Journal of Hydrology. 339 (2007) 118-29, doi: http://dx.doi.org/ 10.1016/j.jhydrol.2007.02.017.
[59] Michael HA, AE Mulligan, CF Harvey. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature. 436 (2005) 1145-8, doi: http:// dx.doi.org/10.1038/nature03935.
[60] Chang SW, TP Clement. Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems. Water Resources Research. 48 (2012) n/a-n/a, doi: http://dx.doi.org/10.1029/2012WR012134.
[61] Lu C, AD Werner. Timescales of seawater intrusion and retreat. Advances in Water Resources. 59 (2013) 39-51, doi: http://dx.doi.org/10.1016/j.advwatres.2013.05.005.
[62] Mahesha A, SH Nagaraja. Effect of natural recharge on sea water intrusion in coastal aquifers. Journal of Hydrology. 174 (1996) 211-20, doi: http://dx.doi.org/ 10.1016/0022-1694(95)02777-7.
[63] Katerina M, DK Antonis, D Georgia. Tipping points for seawater intrusion in coastal aquifers under rising sea level. Environmental Research Letters. 8 (2013) 014001.
[64] Strack ODL. A single-potential solution for regional interface problems in coastal aquifers. Water Resources Research. 12 (1976) 1165-74, doi: http://dx.doi.org/10.1029/ WR012i006p01165.
[65] Peter N. Groundwater dynamics and salinity in coastal barriers. Journal of Coastal Research. 15 (1999) 732-40.
[66] Gallardo AH, A Marui. Modeling the dynamics of the freshwater-saltwater interface in response to construction activities at a coastal site. International Journal of Environmental Science & Technology. 4 (2007) 285-94, doi: http://dx.doi.org/10.1007/ bf03326286.
[67] Guo H, JJ Jiao. Impact of coastal land reclamation on ground water level and the sea water interface. Ground Water. 45 (2007) 362-7, doi: http://dx.doi.org/10.1111/j. 1745-6584.2006.00290.x.
[68] Park C, M Aral. Saltwater intrusion hydrodynamics in a tidal aquifer. Journal of Hydrologic Engineering. 13 (2008) 863-72, doi: http://dx.doi.org/10.1061/(ASCE) 1084-0699(2008)13:9(863).
[69] Dagan G, DG Zeitoun. Seawater-freshwater interface in a stratified aquifer of random permeability distribution. Journal of Contaminant Hydrology. 29 (1998) 185-203, doi: http://dx.doi.org/10.1016/S0169-7722(97)00013-2.
[70] Lecca G, P Cau. Using a Monte Carlo approach to evaluate seawater intrusion in the Oristano coastal aquifer: A case study from the AQUAGRID collaborative computing platform. Physics and Chemistry of the Earth, Parts A/B/C. 34 (2009) 654-61, doi: http://dx.doi.org/10.1016/j.pce.2009.03.002.
[71] Al-Bitar A, R Ababou. Random field approach to seawater intrusion in heterogeneous coastal aquifers: unconditional simulations and statistical analysis. Geostatistics for Environmental Applications: Proceedings of the Fifth European Conference on Geostatistics for Environmental Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. pp. 233-48.
[72] Jacob CE. Flow of groundwater in engineering hydraulics. Wiley, 1950.
[73] Philip J. Periodic nonlinear diffusion: an integral relation and its physical consequences. Australian Journal of Physics. 26 (1973) 513-20.
[74] Inouchi K, Y Kishi, T Kakinuma. The motion of coastal groundwater in response to the tide. Journal of Hydrology. 115 (1990) 165-91, doi: http://dx.doi.org/10.1016/ 0022-1694(90)90203-A.
[75] Ataie-Ashtiani B, RE Volker, DA Lockington. Tidal effects on sea water intrusion in unconfined aquifers. Journal of Hydrology. 216 (1999) 17-31, doi: http://dx.doi.org/ 10.1016/S0022-1694(98)00275-3.
[76] Cheng AH, D Ouazar. Coastal aquifer management-monitoring, modeling, and case studies. CRC Press, 2003.
[77] Li H, Q Zhao, MC Boufadel, AD Venosa. A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Marine Pollution Bulletin. 54 (2007) 1146-61, doi: http://dx.doi.org/10.1016/j.marpolbul.2007.04.015.
[78] Li L, DA Barry, F Stagnitti, JY Parlange. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research. 35 (1999) 3253-9, doi: http://dx.doi.org/10.1029/1999WR900189.
[79] Mango AJ, MW Schmeeckle, DJ Furbish. Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell. Geology. 32 (2004) 233-6, doi: http://dx.doi.org/10.1130/g19922.1.
[80] Turner I. Water table outcropping on macro-tidal beaches: A simulation model. Marine Geology. 115 (1993) 227-38, doi: http://dx.doi.org/10.1016/0025-3227(93) 90052-W.
[81] Robinson C, B Gibbes, L Li. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophysical Research Letters. 33 (2006) n/a-n/a, doi: http://dx.doi.org/10.1029/2005GL025247.
[82] Robinson C, L Li, DA Barry. Effect of tidal forcing on a subterranean estuary. Advances in Water Resources. 30 (2007) 851-65, doi: http://dx.doi.org/10.1016/ j.advwatres.2006.07.006.
[83] Longuet-Higgins MS. Wave Set-Up, percolation and undertow in the surf zone. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences. 390 (1983) 283-91.
[84] Trefry MG, TJA Svensson, GB Davis. Hypoaigic influences on groundwater flux to a seasonally saline river. Journal of Hydrology. 335 (2007) 330-53, doi: http:// dx.doi.org/10.1016/j.jhydrol.2006.12.001.
[85] Heiss JW, HA Michael. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resources Research. 50 (2014) 6747-66, doi: http://dx.doi.org/10.1002/2014WR015574.
[86] Haque MI. Mechanics of groundwater in porous media. Taylor & Francis, 2014.
[87] Steggewentz JH. De invloed van de getijbeweging van zeeen en getijrivieren op de stijghoogte van grondwater: TU Delft, Delft University of Technology; 1933.
[88] Ferris JG. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. Washington, D.C., 1952.
[89] Carr PA, GS Van Der Kamp. Determining aquifer characteristics by the tidal method. Water Resources Research. 5 (1969) 1023-31, doi: http://dx.doi.org/10.1029/ WR005i005p01023.
[90] Dagan G. Second-order theory of shallow free-surface flow in porous media. The Quarterly Journal of Mechanics and Applied Mathematics. 20 (1967) 517-26, doi: http:// dx.doi.org/10.1093/qjmam/20.4.517.
[91] Parlange JY, F Stagnitti, JL Starr, RD Braddock. Free-surface flow in porous media and periodic solution of the shallow-flow approximation. Journal of Hydrology. 70 (1984) 251-63, doi: http://dx.doi.org/10.1016/0022-1694(84)90125-2.
[92] Song Z, L Li, J Kong, H Zhang. A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer. Journal of Hydrology. 340 (2007) 256-60, doi: http://dx.doi.org/10.1016/j.jhydrol.2007.04.015.
[93] Townley LR. The response of aquifers to periodic forcing. Advances in Water Resources. 18 (1995) 125-46, doi: http://dx.doi.org/10.1016/0309-1708(95)00008-7.
[94] Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary. Water Resources Research. 33 (1997) 1429-35, doi: http:// dx.doi.org/10.1029/97WR00482.
[95] Li H, JJ Jiao. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage. Advances in Water Resources. 24 (2001) 565-73, doi: http://dx.doi.org/10.1016/S0309-1708(00)00074-9.
[96] Li L, DA Barry, DS Jeng. Tidal fluctuations in a leaky confined aquifer: Dynamic effects of an overlying phreatic aquifer. Water Resources Research. 37 (2001) 1095-8, doi: http://dx.doi.org/10.1029/2000WR900402.
[97] Li L, DS Jeng, DA Barry. Tidal fluctuations in a leaky confined aquifer: localised effects of an overlying phreatic aquifer. Journal of Hydrology. 265 (2002) 283-7, doi: http://dx.doi.org/10.1016/S0022-1694(02)00104-X.
[98] Guo Q, H Li, MC Boufadel, Y Xia, G Li. Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet-capping. Advances in Water Resources. 30 (2007) 1746-55, doi: http://dx.doi.org/10.1016/ j.advwatres.2007.01.003.
[99] Su N, F Liu, V Anh. Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base. Environmental Modelling & Software. 18 (2003) 937-42, doi: http://dx.doi.org/10.1016/ S1364-8152(03)00058-6.
[100] Asadi-Aghbolaghi M, M-H Chuang, H-D Yeh. Groundwater response to tidal fluctuation in a sloping leaky aquifer system. Applied Mathematical Modelling. 36 (2012) 4750-9, doi: http://dx.doi.org/10.1016/j.apm.2011.12.009.
[101] Li H, JJ Jiao. Tide-induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. Journal of Hydrology. 274 (2003) 211-24, doi: http:// dx.doi.org/10.1016/S002-1694(02)00413-4.
[102] Li L, DA Barry, JY Parlange, CB Pattiaratchi. Beach water table fluctuations due to wave run-up: Capillarity effects. Water Resources Research. 33 (1997) 935-45, doi: http://dx.doi.org/10.1029/96WR03946.
[103] Li L, DA Barry, CB Pattiaratchi. Numerical modelling of tide-induced beach water table fluctuations. Coastal Engineering. 30 (1997) 105-23, doi: http://dx.doi.org/ 10.1016/S0378-3839(96)00038-5.
[104] Kong J, P Xin, G-F Hua, Z-Y Luo, C-J Shen, D Chen, et al. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of Hydrology. 528 (2015) 397-407, doi: http://dx.doi.org/10.1016/j.jhydrol.2015.06.045.
[105] Asadi-Aghbolaghi M, M-H Chuang, H-D Yeh. Groundwater response to tidal fluctuation in an inhomogeneous coastal aquifer-aquitard system. Water resources management. 28 (2014) 3591-617.
[106] Li H, JJ Jiao. Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resources Research. 37 (2001) 1165-71, doi: http://dx.doi.org/10.1029/2000WR900296.
[107] Chuang M-H, H-D Yeh. An analytical solution for the head distribution in a tidal leaky confined aquifer extending an infinite distance under the sea. Advances in Water Resources. 30 (2007) 439-45, doi: http://dx.doi.org/10.1016/j.advwatres.2006.05.011.
[108] Li H, G Li, J Cheng, MC Boufadel. Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resources Research. 43 (2007) n/a-n/a, doi: http://dx.doi.org/10.1029/2005WR004724.
[109] Xia Y, H Li, MC Boufadel, Q Guo, G Li. Tidal wave propagation in a coastal aquifer: Effects of leakages through its submarine outlet-capping and offshore roof. Journal of Hydrology. 337 (2007) 249-57, doi: http://dx.doi.org/10.1016/ j.jhydrol.2007.01.036.
[110] Chuang MH, HD Yeh. Analytical solution for tidal propagation in a leaky aquifer extending finite distance under the sea. Journal of Hydraulic Engineering. 134 (2008) 447-54, doi: http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:4(447).
[111] Li G, H Li, MC Boufadel. The enhancing effect of the elastic storage of the seabed aquitard on the tide-induced groundwater head fluctuation in confined submarine aquifer systems. Journal of Hydrology. 350 (2008) 83-92, doi: http://dx.doi.org/ 10.1016/j.jhydrol.2007.11.037.
[112] Geng X, H Li, MC Boufadel, S Liu. Tide-induced head fluctuations in a coastal aquifer: effects of the elastic storage and leakage of the submarine outlet-capping. Hydrogeology Journal. 17 (2009) 1289-96, doi: http://dx.doi.org/10.1007/s10040-009-0439-x.
[113] Sun P, H Li, MC Boufadel, X Geng, S Chen. An analytical solution and case study of groundwater head response to dual tide in an island leaky confined aquifer. Water Resources Research. 44 (2008) n/a-n/a, doi: http://dx.doi.org/10.1029/2008WR006893.
[114] Huang C-S, H-D Yeh, C-H Chang. A general analytical solution for groundwater fluctuations due to dual tide in long but narrow islands. Water Resources Research. 48 (2012) n/a-n/a, doi: http://dx.doi.org/10.1029/2011WR011211.
[115] Wang X, H Li, L Wan, F Liu, X Jiang. Loading effect of water table variation and density effect on tidal head fluctuations in a coastal aquifer system. Water Resources Research. 48 (2012) n/a-n/a, doi: http://dx.doi.org/10.1029/2011WR011600.
[116] Li L, DA Barry, F Stagnitti, JY Parlange, DS Jeng. Beach water table fluctuations due to spring–neap tides: moving boundary effects. Advances in Water Resources. 23 (2000) 817-24, doi: http://dx.doi.org/10.1016/S0309-1708(00)00017-8.
[117] Chang YC, DS Jeng, HD Yeh. Tidal propagation in an oceanic island with sloping beaches. Hydrol Earth Syst Sci. 14 (2010) 1341-51, doi: http://dx.doi.org/10.5194/hess-14-1341-2010.
[118] Hsieh P-C, H-T Hsu, CB Liao, P-T Chiueh. Groundwater response to tidal fluctuation and rainfall in a coastal aquifer. Journal of Hydrology. 521 (2015) 132-40, doi: http://dx.doi.org/10.1016/j.jhydrol.2014.11.069.
[119] Li L, DA Barry, C Cunningham, F Stagnitti, JY Parlange. A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Advances in Water Resources. 23 (2000) 825-33, doi: http://dx.doi.org/10.1016/S0309-1708(00)00016-6.
[120] Yeh H-D, Y-C Chang. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Advances in Water Resources. 29 (2006) 471-80, doi: http://dx.doi.org/10.1016/j.advwatres.2005.06.002.
[121] Li H, JJ Jiao. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system. Journal of Hydrology. 268 (2002) 234-43, doi: http://dx.doi.org/ 10.1016/S0022-1694(02)00177-4.
[122] Maas C, WJ De Lange. On the negative phase shift of groundwater tides near shallow tidal rivers — The Gouderak anomaly. Journal of Hydrology. 92 (1987) 333-49, doi: http://dx.doi.org/10.1016/0022-1694(87)90022-9.
[123] Shih DC-F, K-F Chiou, C-D Lee, IS Wang. Spectral responses of water level in tidal river and groundwater. Hydrological Processes. 13 (1999) 889-911, doi: http://dx.doi.org/10.1002/(SICI)1099-1085(19990430)13:6<889::AID-HYP763>3.0.CO;2-4.
[124] Shih DC-F, C-D Lee, K-F Chiou, S-M Tsai. Spectral analysis of tidal fluctuations in ground water level. JAWRA Journal of the American Water Resources Association. 36 (2000) 1087-99, doi: http://dx.doi.org/10.1111/j.1752-1688.2000.tb05712.x.
[125] Singh A, MK Jha. A data-driven approach for analyzing dynamics of tide–aquifer interaction in coastal aquifer systems. Environmental Earth Sciences. 65 (2011) 1333-55, doi: http://dx.doi.org/10.1007/s12665-011-1383-3.
[126] Fang CS, SN Wang, W Harrison. Groundwater flow in a sandy tidal beach: 2. Two-dimensional finite element analysis. Water Resources Research. 8 (1972) 121-8, doi: http://dx.doi.org/10.1029/WR008i001p00121.
[127] Li L, DA Barry, CB Pattiaratchi. Modeling Coastal Ground-Water Response to Beach Dewatering. Journal of Waterway, Port, Coastal, and Ocean Engineering. 122 (1996) 273-80, doi: http://dx.doi.org/10.1061/(ASCE)0733-950X(1996)122:6(273).
[128] Ataie-Ashtiani B, RE Volker, DA Lockington. Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition. Journal of Hydrology. 222 (1999) 165-84, doi: http://dx.doi.org/10.1016/S0022-1694(99)00105-5.
[129] Liu S, H Li, MC Boufadel, G Li. Numerical simulation of the effect of the sloping submarine outlet-capping on tidal groundwater head fluctuation in confined coastal aquifers. Journal of Hydrology. 361 (2008) 339-48, doi: http://dx.doi.org/10.1016/ j.jhydrol.2008.08.003.
[130] Li LB, D. A. Pattiaratchi,C. B. Modeling coastal ground-water response to beach dewatering. Journal of Waterway, Port, Coastal, and Ocean Engineering. 122 (1996) 273-80, doi: http://dx.doi.org/10.1061/(ASCE)0733-950X(1996)122:6(273).
[131] Frind EO. Solution of the advection-dispersion equation with free exit boundary. Numerical Methods for Partial Differential Equations. 4 (1988) 301-13, doi: http://dx.doi.org/10.1002/num.1690040403.
[132] Harvey JW, PF Germann, WE Odum. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes. Estuarine, Coastal and Shelf Science. 25 (1987) 677-91, doi: http://dx.doi.org/10.1016/0272-7714(87)90015-1.
[133] Wilson AM, LR Gardner. Tidally driven groundwater flow and solute exchange in a marsh: Numerical simulations. Water Resources Research. 42 (2006) n/a-n/a, doi: http://dx.doi.org/10.1029/2005WR004302.
[134] Wilson AM, JT Morris. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry. 108 (2011) 27-38, doi: http://dx.doi.org/10.1007/s10533-010-9570-y.
[135] Li H, JJ Jiao, M Luk, K Cheung. Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resources Research. 38 (2002) 6-1-6-8, doi: http://dx.doi.org/10.1029/2001WR000556.
[136] Guo H, JJ Jiao, H Li. Groundwater response to tidal fluctuation in a two-zone aquifer. Journal of Hydrology. 381 (2010) 364-71, doi: http://dx.doi.org/ 10.1016/j.jhydrol.2009.12.009.
[137] Chuang M-H, H-D Yeh. A generalized solution for groundwater head fluctuation in a tidal leaky aquifer system. Journal of Earth System Science. 120 (2011) 1055-66, doi: http://dx.doi.org/10.1007/s12040-011-0128-8.
[138] Dominick TF, B Wilkins, H Roberts. Mathematical model for beach groundwater fluctuations. Water Resources Research. 7 (1971) 1626-35, doi: http://dx.doi.org/ 10.1029/WR007i006p01626.
[139] Harrison W, CS Fang, SN Wang. Groundwater flow in a sandy tidal beach: 1. one-dimensional finite element analysis. Water Resources Research. 7 (1971) 1313-22, doi: http://dx.doi.org/10.1029/WR007i005p01313.
[140] Baird AJ, T Mason, DP Horn. Validation of a Boussinesq model of beach ground water behaviour. Marine Geology. 148 (1998) 55-69, doi: http://dx.doi.org/10.1016/ S0025-3227(98)00026-7.
[141] Wang Q, H Zhan, Z Tang. Two-dimensional flow response to tidal fluctuation in a heterogeneous aquifer-aquitard system. Hydrological Processes. 29 (2015) 927-35, doi: http://dx.doi.org/10.1002/hyp.10207.
[142] Jiao JJ, H Li. Breathing of coastal vadose zone induced by sea level fluctuations. Geophysical Research Letters. 31 (2004) n/a-n/a, doi: http://dx.doi.org/10.1029/ 2004GL019572.
[143] Li H, JJ Jiao. One-dimensional airflow in unsaturated zone induced by periodic water table fluctuation. Water Resources Research. 41 (2005) n/a-n/a, doi: http:// dx.doi.org/10.1029/2004WR003916.
[144] Guo H-P, JJ Jiao. Numerical study of airflow in the unsaturated zone induced by sea tides. Water Resources Research. 44 (2008) n/a-n/a, doi: http://dx.doi.org/10.1029/ 2007WR006532.
[145] Xia Y, H Li, L Wang. Tide-induced air pressure fluctuations in a coastal unsaturated zone: effects of thin low-permeability pavements. Ground Water Monitoring & Remediation. 31 (2011) 40-7, doi: http://dx.doi.org/10.1111/j.1745-6592.2011. 01322.x.
[146] Song J-Y, H Li, L Wan. Analytical study of airflow induced by barometric pressure and groundwater head fluctuations in a two-layered unsaturated zone. Groundwater Monitoring & Remediation. 33 (2013) 40-7, doi: http://dx.doi.org/10.1111/j.1745-6592. 2012.01404.x.
[147] Greskowiak J. Tide-induced salt-fingering flow during submarine groundwater discharge. Geophysical Research Letters. 41 (2014) 6413-9, doi: http://dx.doi.org/ 10.1002/2014GL061184.
[148] Roper T, J Greskowiak, G Massmann. Instabilities of submarine groundwater discharge under tidal forcing. Limnology and Oceanography. 60 (2015) 22-8, doi: http:// dx.doi.org/10.1002/lno.10005.
[149] Austin MJ, G Masselink. Swash–groundwater interaction on a steep gravel beach. Continental Shelf Research. 26 (2006) 2503-19, doi: http://dx.doi.org/10.1016/ j.csr.2006.07.031.
[150] Turner I. The total water content of sandy beaches. Journal of Coastal Research. (1993) 11-26.
[151] Steenhauer K, D Pokrajac, T O′Donoghue, GA Kikkert. Subsurface processes generated by bore?driven swash on coarse?grained beaches. Journal of Geophysical Research: Oceans (1978–2012). 116 (2011), doi: http://dx.doi.org/10.1029/ 2010JC006789.
[152] Raubenheimer B, RT Guza, S Elgar. Tidal water table fluctuations in a sandy ocean beach. Water Resources Research. 35 (1999) 2313-20, doi: http://dx.doi.org/10.1029/ 1999WR900105.
[153] Taniguchi M, T Ishitobi, J Shimada. Dynamics of submarine groundwater discharge and freshwater-seawater interface. Journal of Geophysical Research: Oceans. 111 (2006) n/a-n/a, doi: http://dx.doi.org/10.1029/2005JC002924.
[154] Li H, MC Boufadel, JW Weaver. Tide-induced seawater–groundwater circulation in shallow beach aquifers. Journal of Hydrology. 352 (2008) 211-24, doi: http:// dx.doi.org/10.1016/j.jhydrol.2008.01.013.
[155] Turner IL, G Masselink. Swash infiltration-exfiltration and sediment transport. Journal of Geophysical Research: Oceans. 103 (1998) 30813-24, doi: http:// dx.doi.org/10.1029/98JC02606.
[156] Church TM. An underground route for the water cycle. Nature. 380 (1996) 579-80, doi: http://dx.doi.org/10.1038/380579a0.
[157] King JN. Synthesis of benthic flux components in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Water Resources Research. 48 (2012) n/a-n/a, doi: http:// dx.doi.org/10.1029/2011WR011477.
[158] Santos IR, MI Machado, LF Niencheski, W Burnett, IB Milani, CFF Andrade, et al. Major ion chemistry in a freshwater coastal lagoon from southern Brazil (Mangueira lagoon): Influence of groundwater inputs. Aquatic Geochemistry. 14 (2008) 133-46, doi: http://dx.doi.org/10.1007/s10498-008-9029-0.
[159] Pakhomova SV, POJ Hall, MY Kononets, AG Rozanov, A Tengberg, AV Vershinin. Fluxes of iron and manganese across the sediment–water interface under various redox conditions. Marine Chemistry. 107 (2007) 319-31, doi: http://dx.doi.org/10.1016/j. marchem.2007.06.001.
[160] Berg P, RN Glud, A Hume, H Stahl, K Oguri, V Meyer, et al. Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnology and Oceanography: Methods. 7 (2009) 576-84, doi: http://dx.doi.org/10.4319/ lom.2009.7.576.
[161] Bruchert V, B Currie, KR Peard. Hydrogen sulphide and methane emissions on the central Namibian shelf. Progress in Oceanography. 83 (2009) 169-79, doi: http:// dx.doi.org/10.1016/j.pocean.2009.07.017.
[162] Compton J, C Herbert, R Schneider. Organic-rich mud on the western margin of southern Africa: Nutrient source to the Southern Ocean? Global Biogeochemical Cycles. 23 (2009) n/a-n/a, doi: http://dx.doi.org/10.1029/2008GB003427.
[163] Pratihary AK, SWA Naqvi, H Naik, BR Thorat, G Narvenkar, BR Manjunatha, et al. Benthic fluxes in a tropical estuary and their role in the ecosystem. Estuarine, Coastal and Shelf Science. 85 (2009) 387-98, doi: http://dx.doi.org/10.1016/j.ecss.2009.08.012.
[164] Heiss JW, WJ Ullman, HA Michael. Swash zone moisture dynamics and unsaturated infiltration in two sandy beach aquifers. Estuarine, Coastal and Shelf Science. 143 (2014) 20-31, doi: http://dx.doi.org/10.1016/j.ecss.2014.03.015.
[165] Glover RE. The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research. 64 (1959) 457-9, doi: http://dx.doi.org/10.1029/JZ064i004p00 457.
[166] Burnett B. Offshore springs and seeps are focus of working group. Eos, Transactions American Geophysical Union. 80 (1999) 13-5, doi: http://dx.doi.org/ 10.1029/99EO00014.
[167] Steele JH, SA Thorpe, KK Turekian. The coastal ocean: A derivative of the encyclopedia of ocean sciences. Elsevier/Academic Press, 2010.
[168] Moore WS. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature. 380 (1996) 612-4, doi: http://dx.doi.org/10.1038/380612a0.
[169] Slomp CP, P Van Cappellen. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology. 295 (2004) 64-86, doi: http://dx.doi.org/10.1016/j.jhydrol.2004.02.018.
[170] Johannes R. Ecological significance of the submarine discharge of groundwater. (1980).
[171] Hwang D, Y-W Lee, G Kim. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnology and Oceanography. 50 (2005) 1393-403.
[172] Burnett WC, PK Aggarwal, A Aureli, H Bokuniewicz, JE Cable, MA Charette, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of The Total Environment. 367 (2006) 498-543, doi: http://dx.doi.org/ 10.1016/j.scitotenv.2006.05.009.
[173] Simmons G. Importance of submarine groundwater discharge(SGWD) and seawater cycling to material flux across sediment/water interfaces in marine environments. Marine Ecology Progress Series MESEDT. 84 (1992).
[174] Robinson M, D Gallagher, W Reay. Field observations of tidal and seasonal variations in ground water discharge to tidal estuarine aurface water. Ground Water Monitoring & Remediation. 18 (1998) 83-92, doi: http://dx.doi.org/10.1111/j.1745-6592.1998.tb00605.x.
[175] Burnett WC, M Taniguchi, J Oberdorfer. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research. 46 (2001) 109-16, doi: http://dx.doi.org/10.1016/S1385-1101(01)00075-2.
[176] Burnett WC, H Dulaiova. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity. 69 (2003) 21-35, doi: http://dx.doi.org/10.1016/S0265-931X(03)00084-5.
[177] Westbrook SJ, JL Rayner, GB Davis, TP Clement, PL Bjerg, SJ Fisher. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. Journal of Hydrology. 302 (2005) 255-69, doi: http://dx.doi.org/10.1016/j.jhydrol.2004.07.007.
[178] Kuan WK, G Jin, P Xin, C Robinson, B Gibbes, L Li. Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research. 48 (2012) n/a-n/a, doi: http://dx.doi.org/10.1029/2011WR010678.
[179] Ataie-Ashtiani B, RE Volker, DA Lockington. Tidal effects on groundwater dynamics in unconfined aquifers. Hydrological Processes. 15 (2001) 655-69, doi: http:// dx.doi.org/10.1002/hyp.183.
[180] Xin P, C Robinson, L Li, DA Barry, R Bakhtyar. Effects of wave forcing on a subterranean estuary. Water Resources Research. 46 (2010) n/a-n/a, doi: http:// dx.doi.org/10.1029/2010WR009632.
[181] Smith AJ. Mixed convection and density-dependent seawater circulation in coastal aquifers. Water Resources Research. 40 (2004) n/a-n/a, doi: http://dx.doi.org/ 10.1029/2003WR002977.
[182] Kaleris V. Submarine groundwater discharge: Effects of hydrogeology and of near shore surface water bodies. Journal of Hydrology. 325 (2006) 96-117, doi: http:// dx.doi.org/10.1016/j.jhydrol.2005.10.008.
[183] Konikow LF, M Akhavan, CD Langevin, HA Michael, AH Sawyer. Seawater circulation in sediments driven by interactions between seabed topography and fluid density. Water Resources Research. 49 (2013) 1386-99, doi: http://dx.doi.org/10.1002/ wrcr.20121.
[184] Uchiyama Y, K Nadaoka, P Rolke, K Adachi, H Yagi. Submarine groundwater discharge into the sea and associated nutrient transport in a Sandy Beach. Water Resources Research. 36 (2000) 1467-79, doi: http://dx.doi.org/10.1029/2000WR900029.
[185] Prieto C, G Destouni. Quantifying hydrological and tidal influences on groundwater discharges into coastal waters. Water Resources Research. 41 (2005) n/a-n/a, doi: http://dx.doi.org/10.1029/2004WR003920.
[186] Mao X, P Enot, DA Barry, L Li, A Binley, DS Jeng. Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. Journal of Hydrology. 327 (2006) 110-27, doi: http://dx.doi.org/10.1016/j.jhydrol.2005.11.030.
[187] Robinson C, B Gibbes, H Carey, L Li. Salt-freshwater dynamics in a subterranean estuary over a spring-neap tidal cycle. Journal of Geophysical Research: Oceans. 112 (2007) n/a-n/a, doi: http://dx.doi.org/10.1029/2006JC003888.
[188] Li X, BX Hu, WC Burnett, IR Santos, JP Chanton. Submarine ground water discharge driven by tidal pumping in a heterogeneous aquifer. Ground Water. 47 (2009) 558-68, doi: http://dx.doi.org/10.1111/j.1745-6584.2009.00563.x.
[189] Abarca E, H Karam, HF Hemond, CF Harvey. Transient groundwater dynamics in a coastal aquifer: The effects of tides, the lunar cycle, and the beach profile. Water Resources Research. 49 (2013) 2473-88, doi: http://dx.doi.org/10.1002/wrcr.20075.
[190] Kohout FA. Section of geological sciences: A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Floridan aquifer. Transactions of the New York Academy of Sciences. 28 (1965) 249-71, doi: http://dx.doi.org/10.1111 /j.2164-0947.1965.tb02879.x.
[191] Li L, DA Barry. Wave-induced beach groundwater flow. Advances in Water Resources. 23 (2000) 325-37, doi: http://dx.doi.org/10.1016/S0309-1708(99)00032-9.
[192] Xin P, SSJ Wang, C Robinson, L Li, Y-G Wang, DA Barry. Memory of past random wave conditions in submarine groundwater discharge. Geophysical Research Letters. 41 (2014) 2401-10, doi: http://dx.doi.org/10.1002/2014GL059617.
[193] Yang J, T Graf, M Herold, T Ptak. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface–subsurface approach. Journal of Contaminant Hydrology. 149 (2013) 61-75, doi: http://dx.doi.org/10.1016/j.jconhyd. 2013.03.002.
[194] Robinson C, P Xin, L Li, DA Barry. Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions. Water Resources Research. 50 (2014) 165-81, doi: http://dx.doi.org/10.1002/2013WR013813.
[195] Xin P, SSJ Wang, C Lu, C Robinson, L Li. Nonlinear interactions of waves and tides in a subterranean estuary. Geophysical Research Letters. 42 (2015) 2277-84, doi: http://dx.doi.org/10.1002/2015GL063643.
[196] Anderson WP, RE Emanuel. Effect of interannual climate oscillations on rates of submarine groundwater discharge. Water Resources Research. 46 (2010) n/a-n/a, doi: http://dx.doi.org/10.1029/2009WR008212.
[197] Li H, L Li, D Lockington, MC Boufadel, G Li. Modelling tidal signals enhanced by a submarine spring in a coastal confined aquifer extending under the sea. Advances in Water Resources. 30 (2007) 1046-52, doi: http://dx.doi.org/10.1016/ j.advwatres.2006.09.004.
[198] Zhang Q, RE Volker, DA Lockington. Influence of seaward boundary condition on contaminant transport in unconfined coastal aquifers. Journal of Contaminant Hydrology. 49 (2001) 201-15, doi: http://dx.doi.org/10.1016/S0169-7722(00)00194-7.
[199] Ullman WJ, B Chang, DC Miller, JA Madsen. Groundwater mixing, nutrient diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware (USA). Estuarine, Coastal and Shelf Science. 57 (2003) 539-52, doi: http://dx.doi.org/10.1016/ S0272-7714(02)00398-0.
[200] Anwar N, C Robinson, DA Barry. Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations. Advances in Water Resources. 73 (2014) 203-13, doi: http://dx.doi.org/10.1016/j.advwatres.2014.08.015.
[201] Weiskel PK, BL Howes. Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environmental Science & Technology. 26 (1992) 352-60, doi: http://dx.doi.org/10.1021/es00026a017.
[202] Li H, MC Boufadel. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geosci. 3 (2010) 96-9, doi: http://dx.doi.org/10.1038/ ngeo749.
[203] Li H, MC Boufadel. A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Marine Pollution Bulletin. 62 (2011) 1261-9, doi: http://dx.doi.org/10.1016/j.marpolbul.2011.03.011.
[204] Bakhtyar R, A Brovelli, DA Barry, C Robinson, L Li. Transport of variable-density solute plumes in beach aquifers in response to oceanic forcing. Advances in Water Resources. 53 (2013) 208-24, doi: http://dx.doi.org/10.1016/j.advwatres.2012.11.009.
[205] Pool M, VEA Post, CT Simmons. Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resources Research. 51 (2015) 1570-85, doi: http://dx.doi.org/10.1002/ 2014WR016068.
[206] Boufadel MC, Y Xia, H Li. Modeling solute transport and transient seepage in a laboratory beach under tidal influence. Environmental Modelling & Software. 26 (2011) 899-912, doi: http://dx.doi.org/10.1016/j.envsoft.2011.02.005.
[207] Liu Y, X Mao, J Chen, DA Barry. Influence of a coarse interlayer on seawater intrusion and contaminant migration in coastal aquifers. Hydrological Processes. 28 (2014) 5162-75, doi: http://dx.doi.org/10.1002/hyp.10002.
[208] Zhang Q, RE Volker, DA Lockington. Experimental investigation of contaminant transport in coastal groundwater. Advances in Environmental Research. 6 (2002) 229-37, doi: http://dx.doi.org/10.1016/S1093-0191(01)00054-5.
[209] Volker RE, Q Zhang, DA Lockington. Numerical modelling of contaminant transport in coastal aquifers. Mathematics and Computers in Simulation. 59 (2002) 35-44, doi: http://dx.doi.org/10.1016/S0378-4754(01)00391-3.
[210] Brovelli A, X Mao, DA Barry. Numerical modeling of tidal influence on density-dependent contaminant transport. Water Resources Research. 43 (2007) n/a-n/a, doi: http://dx.doi.org/10.1029/2006WR005173.
[211] Nick HM, A Raoof, F Centler, M Thullner, P Regnier. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of Contaminant Hydrology. 145 (2013) 90-104, doi: http://dx.doi.org/ 10.1016/j.jconhyd.2012.12.005.
[212] Boufadel MC, Y Sharifi, B Van Aken, BA Wrenn, K Lee. Nutrient and oxygen concentrations within the sediments of an Alaskan beach polluted with the Exxon Valdez oil spill. Environmental Science & Technology. 44 (2010) 7418-24, doi: http:// dx.doi.org/10.1021/es102046n.
[213] Xia Y, H Li, MC Boufadel, Y Sharifi. Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach. Water Resources Research. 46 (2010) n/a-n/a, doi: http://dx.doi.org/10.1029/2010WR009179.
[214] Suri? M, R Lon?ari?, N Buzjak, ST Schultz, J ?angulin, K Maldini, et al. Influence of submarine groundwater discharge on seawater properties in Rovanjska-Modri? karst region (Croatia). Environmental Earth Sciences. 74 (2015) 5625-38, doi: http:// dx.doi.org/10.1007/s12665-015-4577-2.
[215] Burgherr P. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. Journal of Hazardous Materials. 140 (2007) 245-56, doi: http://dx.doi.org/10.1016/j.jhazmat.2006.07.030.
[216] Geng X, MC Boufadel, K Lee, S Abrams, M Suidan. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry. Water Resources Research. 51 (2015) 3193-218, doi: http://dx.doi.org/ 10.1002/2014WR016870.
[217] Amos RT, K Ulrich Mayer. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. Journal of Contaminant Hydrology. 87 (2006) 123-54, doi: http://dx.doi.org/10.1016/ j.jconhyd.2006.04.008.
[218] Seed HB, MS Rahman. Wave?induced pore pressure in relation to ocean floor stability of cohesionless soils. Marine Geotechnology. 3 (1978) 123-50, doi: http:// dx.doi.org/10.1080/10641197809379798.
[219] Rahman MS. Wave?induced instability of seabed: Mechanism and conditions. Marine Geotechnology. 10 (1991) 277-99, doi: http://dx.doi.org/10.1080/10641199 109379896.
[220] Christian JT, PK Taylor, JK Yen, DR Erali. Large diameter underwater pipe line for nuclear power plant designed against soil liquefaction. Offshore technology conference. Offshore Technology Conference1974.
[221] Madhu Sudhan C, V Sundar, S Narasimha Rao. Wave induced forces around buried pipelines. Ocean Engineering. 29 (2002) 533-44, doi: http://dx.doi.org/ 10.1016/S0029-8018(01)00012-9.
[222] Magda W. Wave-induced uplift force acting on a submarine buried pipeline: Finite element formulation and verification of computations. Computers and Geotechnics. 19 (1996) 47-73, doi: http://dx.doi.org/10.1016/0266-352X(95)00036-A.
[223] Magda W. Wave-induced uplift force on a submarine pipeline buried in a compressible seabed. Ocean Engineering. 24 (1997) 551-76, doi: http://dx.doi.org/ 10.1016/S0029-8018(96)00031-5.
[224] Gatmiri B. Wave-induced stresses and pore pressures in sloping seabeds. International Journal for Numerical and Analytical Methods in Geomechanics. 15 (1991) 355-73, doi: http://dx.doi.org/10.1002/nag.1610150505.
[225] Riedl RJ, N Huang, R Machan. The subtidal pump: a mechanism of interstitial water exchange by wave action. Marine Biology. 13 (1972) 210-21, doi: http:// dx.doi.org/10.1007/bf00391379.
[226] Putnam JA. Loss of wave energy due to percolation in a permeable sea bottom. Eos, Transactions American Geophysical Union. 30 (1949) 349-56, doi: http:// dx.doi.org/10.1029/TR030i003p00349.
[227] Thibodeaux LJ, JD Boyle. Bedform-generated convective transport in bottom sediment. Nature. 325 (1987) 341-3, doi: http://dx.doi.org/10.1038/325341a0.
[228] Precht E, M Huettel. Rapid wave-driven advective pore water exchange in a permeable coastal sediment. Journal of Sea Research. 51 (2004) 93-107, doi: http:// dx.doi.org/10.1016/j.seares.2003.07.003.
[229] Bayani Cardenas M, JL Wilson. The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. Journal of Hydrology. 331 (2006) 103-9, doi: http://dx.doi.org/10.1016/j.jhydrol.2006.05.012.
[230] Elliott AH, NH Brooks. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research. 33 (1997) 123-36, doi: http://dx.doi.org/ 10.1029/96WR02784.
[231] Elliott AH, NH Brooks. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research. 33 (1997) 137-51, doi: http://dx.doi.org/10.1029/96WR02783.
[232] Savant SA, DD Reible, LJ Thibodeaux. Convective transport within stable river sediments. Water Resources Research. 23 (1987) 1763-8, doi: http://dx.doi.org/10.1029/ WR023i009p01763.
[233] Shum KT, B Sundby. Organic matter processing in continental shelf sediments—the subtidal pump revisited. Marine Chemistry. 53 (1996) 81-7, doi: http://dx.doi.org/ 10.1016/0304-4203(96)00014-X.
[234] Sawyer AH, F Shi, JT Kirby, HA Michael. Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary. Journal of Geophysical Research: Oceans. 118 (2013) 1749-58, doi: http://dx.doi.org/ 10.1002/jgrc.20154.
[235] Huettel M, W Ziebis, S Forster. Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography. 41 (1996) 309-22, doi: http:// dx.doi.org/10.4319/lo.1996.41.2.0309.
[236] Precht E, M Huettel. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnology and Oceanography. 48 (2003) 1674-84, doi: http://dx.doi.org/10.4319/lo.2003.48.4.1674.
[237] Goharzadeh A, A Saidi, D Wang, W Merzkirc, A Khalil. An experimental investigation of the brinkman layer thickness at a fluid-porous interface. in: GEA Meier, KR Sreenivasan, HJ Heinemann, (Eds.). IUTAM Symposium on One Hundred Years of Boundary Layer Research: Proceedings of the IUTAM Symposium held at DLR-Gottingen, Germany, August 12-14, 2004. Springer Netherlands, Dordrecht, 2006. pp. 445-54.
[238] Webster IT, SJ Norquay, FC Ross, RA Wooding. Solute exchange by convection within estuarine sediments. Estuarine, Coastal and Shelf Science. 42 (1996) 171-83, doi: http://dx.doi.org/10.1006/ecss.1996.0013.
[239] Huettel M, G Gust. Impact of bioroughness on interfacial solute exchange in permeable sediments. Marine Ecology Progress Series. 89 (1992) 253-67, doi: http:// dx.doi.org/10.3354/meps089253.
[240] O′Hara SCM, PR Dando, U Schuster, A Bennis, JD Boyle, FTW Chui, et al. Gas seep induced interstitial water circulation: observations and environmental implications. Continental Shelf Research. 15 (1995) 931-48, doi: http://dx.doi.org/10.1016/0278-4343(95)80003-V.
[241] Moore WS, AM Wilson. Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth and Planetary Science Letters. 235 (2005) 564-76, doi: http://dx.doi.org/10.1016/j.epsl.2005.04.043.
[242] Bakhtyar R, DA Barry, A Brovelli. Numerical experiments on interactions between wave motion and variable-density coastal aquifers. Coastal Engineering. 60 (2012) 95-108, doi: http://dx.doi.org/10.1016/j.coastaleng.2011.09.001.
[243] MacMahan JH, EB Thornton, AJHM Reniers. Rip current review. Coastal Engineering. 53 (2006) 191-208, doi: http://dx.doi.org/10.1016/j.coastaleng.2005. 10.009.
[244] Okayasu A, T Shibayama, N Mimura. Velocity field under plunging waves. Coastal Engineering Proceedings. (1986), doi: http://dx.doi.org/10.9753/ icce.v20.%25p.
[245] Yanagi T. Coastal oceanography. Springer Netherlands, 2010.
[246] Kuriyama Y, T Nakatsukasa. A one-dimensional model for undertow and longshore current on a barred beach. Coastal Engineering. 40 (2000) 39-58, doi: http:// dx.doi.org/10.1016/S0378-3839(00)00005-3.
[247] Shinn EA, CD Reich, TD Hickey. Seepage meters and Bernoulli’s revenge. Estuaries. 25 (2002) 126-32, doi: http://dx.doi.org/10.1007/bf02696056.
[248] Yeh GT, Y Li, PM Jardine, WD Burgos, Y Fang, MH Li, et al. HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport and HYDROGEOCHEMical transport through saturated-unsaturated media: Version 4.0. Oak Ridge National Laboratory2004.
[249] Yeh G-T. A model to couple flow, thermal and reactive chemical transport, and geo-mechanics in variably saturated media. 2015 AGU Fall Meeting. Agu2015.
[250] Lee IH, C-F Ni. Fracture-based modeling of complex flow and CO2 migration in three-dimensional fractured rocks. Computers & Geosciences. 81 (2015) 64-77, doi: http://dx.doi.org/10.1016/j.cageo.2015.04.012.
[251] Arnold D, C Plank, E Erickson, F Pike. Solubility of benzene in water. Industrial & Engineering Chemistry Chemical & Engineering Data Series. 3 (1958) 253-6, doi: http://dx.doi.org/10.1021/i460004a016.
[252] Bowden KF. Physical oceanography of coastal waters. E. Horwood, 1983.
[253] Pugh D. Changing sea levels: Effects of tides, weather and climate. Cambridge University Press, 2004.
[254] Knauss JA. Introduction to physical oceanography. Prentice Hall, 1997.
[255] Thiebaut M, A Sentchev. Estimation of tidal stream potential in the Iroise Sea from velocity observations by high frequency radars. Energy Procedia. 76 (2015) 17-26, doi: http://dx.doi.org/10.1016/j.egypro.2015.07.835.
[256] Lewis MJ, SP Neill, MR Hashemi, M Reza. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy. 136 (2014) 495-508, doi: http://dx.doi.org/10.1016/j.apenergy.2014.09.061.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明