參考文獻 |
[1] Castelletto, N., Teatini, P., Gambolati, G., Bossie-Codreanu, D., Vincké, O., Daniel, J.-M., Battistelli, A., Marcolini, M., Donda, F., Volpi, V., 2013. Multiphysics modeling of CO2 sequestration in a faulted saline formation in Italy. Advances in Water Resources 62, Part C, 570-587.
[2] Bodin, J., Porel, G., Delay, F., 2003. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth and Planetary Science Letters 208, 297-304.
[3] Dverstorp, B., Andersson, J., Nordqvist, W., 1992. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock. Water Resources Research 28, 2327-2343.
[4] Long, J.C.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A., 1982. Porous media equivalents for networks of discontinuous fractures. Water Resources Research 18, 645-658.
[5] Wang L, Cardenas MB., 2015. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation. Journal of Contaminant Hydrology 179, 47-54.
[6] Hyman JD, Karra S, Makedonska N, Gable CW, Painter SL, Viswanathan HS., 2015. DFNWORKS: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences 84, 10-9.
[7] Hyman JD, Gable CW, Painter SL, Makedonska N., 2014. Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy. SIAM Journal on Scientific Computing 36, A1871-A94.
[8] Kalbacher T, Wang W, McDermott C, Kolditz O, Taniguchi T., 2005. Development and application of a CAD interface for fractured rock. Environmental Geology 47, 1017-27.
[9] Zhang Q-H., 2015. Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks. Journal of Hydrology 529, Part 3, 890-908.
[10] Makedonska N, Painter S, Bui Q, Gable C, Karra S., 2015. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences 19, 1123-1137.
[11] Neuman S., 2005. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal 13, 124-47.
[12] Berrone, S., Pieraccini, S., Scialò, S., 2014. An optimization approach for large scale simulations of discrete fracture network flows. Journal of Computational Physics 256, 838-853.
[13] Berrone, S., Pieraccini, S., Scialò, S., 2013. A PDE-constrained optimization formulation for discrete fracture network flows. SIAM Journal on Scientific Computing 35, B487-B510.
[14] Peratta, A., Popov, V., 2006. A new scheme for numerical modelling of flow and transport processes in 3D fractured porous media. Advances in Water Resources 29, 42-61.
[15] Maryška, J., Severýn, O., Vohralík, M., 2005. Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model. Computational Geosciences 8, 217-234.
[16] Lee, I.-H., Ni, C.-F., 2015. Fracture-based modeling of complex flow and CO2 migration in three-dimensional fractured rocks. Computers & Geosciences 81, 64-77.
[17] La Pointe, P.R., 1988. A method to characterize fracture density and connectivity through fractal geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25, 421-429.
[18] Okubo, P.G., Aki, K., 1987. Fractal geometry in the San Andreas Fault System. Journal of Geophysical Research: Solid Earth 92, 345-355.
[19] Scholz, C.H., Cowie, P.A., 1990. Determination of total strain from faulting using slip measurements. Nature 346, 837-839.
[20] Segall, P., Pollard, D.D., 1983. Joint formation in granitic rock of the Sierra Nevada. Geological Society of America Bulletin 94, 563-575.
[21] Hestir, K., Long, J.C.S., 1990. Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories. Journal of Geophysical Research: Solid Earth 95, 21565-21581.
[22] Khamforoush, M., Shams, K., 2007. Percolation thresholds of a group of anisotropic three-dimensional fracture networks. Physica A: Statistical Mechanics and its Applications 385, 407-420.
[23] Davy P, Bour O, de Dreuzy JR, Darcel C., 2006. Flow in multiscale fractal fracture networks. Geological Society Special Publication,pp. 31-45.
[24] Stephens, M.B., Follin, S., Petersson, J., Isaksson, H., Juhlin, C., Simeonov, A., 2015. Review of the deterministic modelling of deformation zones and fracture domains at the site proposed for a spent nuclear fuel repository, Sweden, and consequences of structural anisotropy. Tectonophysics 653, 68-94.
[25] Hartley, L., Joyce, S., 2013. Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden. Journal of Hydrology 500, 200-216.
[26] Dershowitz, W.S., Fidelibus, C., 1999. Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resources Research 35, 2685-2691.
[27] Cacas, M.C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P., 1990b. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resources Research 26, 479-489.
[28] Painter, S., Cvetkovic, V., Selroos, J.-O., 2002. Power-law velocity distributions in fracture networks: Numerical evidence and implications for tracer transport. Geophysical Research Letters 29, 20-21-20-24.
[29] Li, S.C., Xu, Z.H., Ma, G.W., 2014. A Graph-theoretic Pipe Network Method for water flow simulation in discrete fracture networks: GPNM. Tunnelling and Underground Space Technology 42, 247-263.
[30] Li, S.C., Xu, Z.H., Ma, G.W., Yang, W.M., 2014. An adaptive mesh refinement method for a medium with discrete fracture network: The enriched Persson’s method. Finite Elements in Analysis and Design 86, 41-50.
[31] Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A.H., Pal, M., 2015. Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. Journal of Computational Physics 284, 462-489.
[32] Johnson, J., Brown, S., Stockman, H., 2006. Fluid flow and mixing in rough-walled fracture intersections. Journal of Geophysical Research: Solid Earth 111, B12206.
[33] Botros, F.E., Hassan, A.E., Reeves, D.M., Pohll, G., 2008. On mapping fracture networks onto continuum. Water Resources Research 44, W08435.
[34] Hyman, J.D., Painter, S.L., Viswanathan, H., Makedonska, N., Karra, S., 2015b. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resources Research, 7289- 7308.
[35] Bogdanov, I.I., Mourzenko, V.V., Thovert, J.F., Adler, P.M., 2003. Effective permeability of fractured porous media in steady state flow. Water Resources Research 39, 1023.
[36] Mourzenko, V.V., Bogdanov, I.I., Thovert, J.F., Adler, P.M., 2011. Three-dimensional numerical simulation of single-phase transient compressible flows and well-tests in fractured formations. Mathematics and Computers in Simulation 81, 2270-2281.
[37] 趙奕然,2014。利用LiDAR點雲及影像資料決定露頭節理結合面之研究。國立中央大學碩士論文。
[38] Long, J.C.S., Gilmour, P., Witherspoon, P.A., 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research 21, 1105-1115.
[39] Lee, C.-H., 1990. Flow in fractured rock. The University of Arizona, p. 311.
[40] Long, J.C.S., Gilmour, P., Witherspoon, P.A., 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research 21, 1105-1115.
[41] Baecher, G., 1983. Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology 15, 329-348.
[42] Baecher, G.B., Lanney, N.A., Einstein, H.H., 1977. Statistical description of rock properties and sampling, The 18th U.S. Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
[43] Dershowitz, W.S., Einstein, H.H., 1988. Characterizing rock joint geometry with joint system models. Rock Mechanics and Rock Engineering 21, 21-51.
[44] 林宏奕,2009。裂隙岩體優勢水流路徑之研究。國立成功大學博士論文。
[45] Parsons, R.W., 1966. Permeability of idealized fractured rock 6 th, Society of Petroleum Engineers, 126-136.
[46] Wilson, C.R., Witherspoon, P.A., 1976. Flow interference effects at fracture intersections. Water Resources Research 12, 102-104.
[47] Schwartz, F.W., Smith, L., Crowe, A.S., 1983. A stochastic analysis of macroscopic dispersion in fractured media. Water Resources Research 19, 1253-1265.
[48] Smith, L., Schwartz, F.W., 1984. An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resources Research 20, 1241-1252.
[49] Andersson, J., Shapiro, A.M., Bear, J., 1984. A stochastic model of a fractured rock conditioned by measured information. Water Resources Research 20, 79-88.
[50] Andersson, J., Thunvik, R., 1986. Predicting mass transport in discrete fracture networks with the aid of geometrical field data. Water Resources Research 22, 1941-1950.
[51] Wei, Z.Q., Egger, P., Descoeudres, F., 1995. Permeability predictions for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 32, 251-261.
[52] Gómez-Hernández, J.J., Franssen, H.J.H., Cassiraga, E.F., 2001. Stochastic analysis of flow response in a three-dimensional fractured rock mass block. International Journal of Rock Mechanics and Mining Sciences 38, 31-44.
[53] Rejeb, A., Bruel, D., 2001. Hydromechanical effects of shaft sinking at the Sellafield site. International Journal of Rock Mechanics and Mining Sciences 38, 17-29.
[54] de Dreuzy, J.-R., Davy, P., Bour, O., 2001. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resources Research 37, 2065-2078.
[55] Park, Y.-J., Lee, K.-K., Kosakowski, G., Berkowitz, B., 2003. Transport behavior in three-dimensional fracture intersections. Water Resources Research 39, 1215.
[56] 葉振峰,2012。低放射性廢棄物場址核種傳輸之研究-以台東達仁場址為例,國立成功大學碩士論文。
[57] Barenblatt, G.I., Zheltov, I.P., Kochina, I.N., 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics 24, 1286-1303.
[58] Warren, J.E., Root, P.J., 1963. The behavior of naturally fractured reservoirs. Society of Petroleum Engineers 3, 245-255.
[59] Zimmerman, R.W., Chen, G., Hadgu, T., Bodvarsson, G.S., 1993. A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow. Water Resources Research 29, 2127-2137.
[60] Huyakorn, P.S., Lester, B.H., Faust, C.R., 1983. Finite element techniques for modeling groundwater flow in fractured aquifers. Water Resources Research 19, 1019-1035.
[61] Snow, D.T., 1965. A parallel plate model of fractured permeable media. University of California, Berkeley.
[62] Weiss, L.E., 1972. The Minor Structures of Deformed Rocks: A Photographic Atlas. Springer Berlin Heidelberg.
[63] Oda, M., 1985. Permeability tensor for discontinuous rock masses. Géotechnique 35, 483-495.
[64] Rouleau, A., Gale, J.E., 1987. Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 24, 99-112.
[65] Neuman, S.P., Depner, J.S., 1988. Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. Journal of Hydrology 102, 475-501.
[66] Larocque, M., Banton, O., Ackerer, P., Razack, M., 1999. Determining Karst Transmissivities with Inverse Modeling and an Equivalent Porous Media. Ground Water 37, 897-903.
[67] Bernabé, Y., Bruderer-Weng, C., Maineult, A., 2003. Permeability fluctuations in heterogeneous networks with different dimensionality and topology. Journal of Geophysical Research: Solid Earth 108, 2351.
[68] Ripley, B.D., 1981. Spatial statistics. John Wiley & Sons.
[69] Priest, S.D., Hudson, J.A., 1976. Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 13, 135-148.
[70] Priest, D.S., 2004. Determination of discontinuity size distributions from scanline data. Rock Mechanics and Rock Engineering 37, 347-368.
[71] Priest, D.S., 1993. Discontinuity analysis for rock engineering. Chapman and Hall.
[72] Xu, C., Dowd, P., 2010. A new computer code for discrete fracture network modelling. Computers & Geosciences 36, 292-301.
[73] Min, K.-B., Jing, L., Stephansson, O., 2004a. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeology Journal 12, 497-510.
[74] Min, K.-B., Rutqvist, J., Tsang, C.-F., Jing, L., 2004b. Stress-dependent permeability of fractured rock masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences 41, 1191-1210.
[75] Pichot, G., Erhel, J., de Dreuzy, J., 2012. A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks. SIAM Journal on Scientific Computing 34, B86-B105.
[76] Cruden, D.M., 1977. Describing the size of discontinuities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 14, 133-137.
[77] Pahl, P.J., 1981. Estimating the mean length of discontinuity traces. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18, 221-228.
[78] Chilès, J.P., Fractal and geostatistical methods for modeling of a fracture network. Journal of the International Association for Mathematical Geology 20, 631-654.
[79] Bour, O., Davy, P., Darcel, C., Odling, N., 2002. A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research: Solid Earth 107, ETG 4-1-ETG 4-12.
[80] Chellappa, V., Chiou, Z.W., Jang, B.Z., Electromechanical and electrothermal behaviours of carbon whisker reinforced elastomer composites. Journal of Materials Science 30, 4263-4272.
[81] Villaescusa, E., Brown, E.T., 1990. Characterizing joint spatial correlations using geostatistical methods. Barton and Stephansson, Balkema, 115-122.
[82] Fisher, R., 1953. Dispersion on a sphere. Proceedings of the Royal Society 217, 295-305.
[83] Herget, G., 1970. Shear strength anisotropy in a bedded pyritic shale and a siliceous dolomite. Rock mechanics 2, 93-100.
[84] Bridges, M.C., 1975. Presentation of fracture data for rock mechanics, 2nd Australian-New Zealand Com. on Geomech. Brisbane, pp. 144-148.
[85] Einstein, H.H., Baecher, G.B., 1983. Probabilistic and statistical methods in engineering geology. Rock Mechanics and Rock Engineering 16, 39-72.
[86] Kulatilake, P.H.S.W., State-of-The-Art In Stochastic Joint Geometry Modeling. American Rock Mechanics Association.
[87] Ross, S.M., 1997. Introduction to Probability Models 6th Edn. Academic press, 669.
[88] La Pointe, P.R., Wallmann, P.C., Dershowitz, W.S., 1993. Stochastic estimation of fracture size through simulated sampling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30, 1611-1617.
[89] Dershowitz, W.S., Herda, H.H., 1992. Interpretation of fracture spacing and intensity, The 33th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
[90] Pruess, K., Tsang, Y.W., 1990. On two-phase relative permeability and capillary pressure of rough-walled rock fractures. Water Resources Research 26, 1915-1926.
[91] Kwicklis, E.M., Healy, R.W., 1993. Numerical investigation of steady liquid water flow in a variably saturated fracture network. Water Resources Research 29, 4091-4102.
[92] Liu, H.H., Bodvarsson, G.S., Finsterle, S., 2002. A note on unsaturated flow in two-dimensional fracture networks. Water Resources Research 38, 1176.
[93] Cacas, M.C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., Margritta, R., 1990a. Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 2. The transport model. Water Resources Research 26, 491-500.
[94] Dershowitz, W., Miller, I., 1995. Dual porosity fracture flow and transport. Geophysical Research Letters 22, 1441-1444.
[95] Frampton, A., Cvetkovic, V., 2009. Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks. Advances in Water Resources 32, 649-658.
[96] Zafarani, A., Detwiler, R.L., 2013. An efficient time-domain approach for simulating Pe-dependent transport through fracture intersections. Advances in Water Resources 53, 198-207.
[97] Ivanova, V.M., Sousa, R., Murrihy, B., Einstein, H.H., 2014. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems. Computers & Geosciences 67, 100-109.
[98] Mustapha, H., Mustapha, K., 2007. A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM Journal on Scientific Computing 29, 1439-1459.
[99] Sun, S., Sui, J., Chen, B., Yuan, M., 2013. An efficient mesh generation method for fractured network system based on dynamic grid deformation. Mathematical Problems in Engineering 2013, 9.
[100] Karimi-Fard, M., Gong, B., Durlofsky, L.J., 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research 42, W10423.
[101] Erhel, J., de Dreuzy, J.R., Beaudoin, A., Bresciani, E., Tromeur-Dervout, D., 2009. A parallel scientific software for heterogeneous hydrogeoloy, Parallel Computational Fluid Dynamics 2007, 39-48.
[102] Rutqvist, J., Leung, C., Hoch, A., Wang, Y., Wang, Z., 2013. Linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow and transport in fractured rock. Journal of Rock Mechanics and Geotechnical Engineering 5, 18-31.
[103] Reeves, D.M., Benson, D.A., Meerschaert, M.M., 2008. Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation. Water Resources Research 44, W05404.
[104] de Dreuzy, J.-R., Pichot, G., Poirriez, B., Erhel, J., 2013. Synthetic benchmark for modeling flow in 3D fractured media. Computers & Geosciences 50, 59-71.
[105] Pan, J.-B., Lee, C.-C., Lee, C.-H., Yeh, H.-F., Lin, H.-I., 2010. Application of fracture network model with crack permeability tensor on flow and transport in fractured rock. Engineering Geology 116, 166-177.
[106] Finsterle, S., Sonnenthal, E.L., Spycher, N., 2014. Advances in subsurface modeling using the TOUGH suite of simulators. Computers & Geosciences 65, 2-12.
[107] Pruess, K., Spycher, N., 2007. ECO2N – A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Conversion and Management 48, 1761-1767.
[108] Kiryukhin, A., Xu, T., Pruess, K., Apps, J., Slovtsov, I., 2004. Thermal–hydrodynamic–chemical (THC) modeling based on geothermal field data. Geothermics 33, 349-381.
[109] Itälä, A., Olin, M., Lehikoinen, J., 2011. Lot A2 test, THC modelling of the bentonite buffer. Physics and Chemistry of the Earth, Parts A/B/C 36, 1830-1837.
[110] Aradóttir, E.S.P., Sonnenthal, E.L., Jónsson, H., 2012. Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks. Chemical Geology 304–305, 26-38.
[111] Zhang, K., Wu, Y.S., Bodvarsson, G.S., Liu, H.H., 2004. Flow focusing in unsaturated fracture networks: A numerical investigation. Vadose Zone Journal 3, 624-633.
[112] Finsterle, S., Ahlers, C.F., Trautz, R.C., Cook, P.J., 2003. Inverse and predictive modeling of seepage into underground openings. Journal of Contaminant Hydrology 62–63, 89-109.
[113] Mukhopadhyay, S., Tsang, Y.W., 2003. Uncertainties in coupled thermal–hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada. Journal of Contaminant Hydrology 62–63, 595-612.
[114] Zhang, K., Wu, Y.-S., Bodvarsson, G.S., 2003. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada. Journal of Contaminant Hydrology 62–63, 381-399.
[115] Pan, P.-Z., Rutqvist, J., Feng, X.-T., Yan, F., 2014. TOUGH–RDCA modeling of multiple fracture interactions in caprock during CO2 injection into a deep brine aquifer. Computers & Geosciences 65, 24-36.
[116] Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow. Water Resources Research 17, 1529-1534.
[117] Dagan, G., 1989. Flow and transport in porous formations. Springer-Verlag GmbH & Co. KG.
[118] Zheng, C., Bennett, G.D., 2002. Applied contaminant transport modeling. Wiley-Interscience New York.
[119] De Marsily, G., 1986. Quantitative hydrogeology. Academic Press.
[120] Altman, S.J., Arnold, B., Barnard, R., Barr, G., Ho, C., McKenna, S., Eaton, R., 1996. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95). Sandia National Labs., Albuquerque, N.M. SAND96-0819.
[121] van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal 44, 892-898.
[122] Corey, A.T., 1954. The interrelation between gas and oil relative permeabilities. Producers monthly 19, 38-41.
[123] Vujević, K., Graf, T., Simmons, C.T., Werner, A.D., 2014. Impact of fracture network geometry on free convective flow patterns. Advances in Water Resources 71, 65-80.
[124] Ben Abdelghani, F., Aubertin, M., Simon, R., Therrien, R., 2015. Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass. International Journal of Mining Science and Technology 25, 37-45.
[125] Mo, H., Bai, M., Lin, D., Roegiers, J.-C., 1998. Study of flow and transport in fracture network using percolation theory. Applied Mathematical Modelling 22, 277-291.
[126] Graf, T., Therrien, R., 2007. Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Advances in Water Resources 30, 455-468.
[127] Cacace, M., Blöcher, G., 2015. MeshIt—a software for three dimensional volumetric meshing of complex faulted reservoirs. Environmental Earth Sciences, 1-19.
[128] Painter, S., Cvetkovic, V., Mancillas, J., Pensado, O., 2008. Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resources Research 44, W01406. |