博碩士論文 93521044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.144.172.101
姓名 黃文賓(Wen-Pin Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵高電壓蕭特基二極體之製作
(Fabrication of GaN High Voltage Schottky Diodes)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 追求高品質的電力供需,一直是全球各國想要達到的目標,大量的興建電廠並非解決問題的途徑,而是要提高電器產品的效率,才能有效解決問題。本論文研究具有高崩潰電壓、大操作電流及短逆向回復時間之氮化鎵蕭特基二極體製作,元件結構分為n型氮化鎵與AlGaN/GaN元件結構。對於n型氮化鎵元件結構,我們利用2.8μm未摻雜n型氮化鎵製作平台式蕭特基二極體,可獲得190V的崩潰電壓,以及利用不同溫度下之電流-電壓特性曲線分析載子的傳輸行為。
平面式FP AlGaN/GaN異質接面元件結構,獨特的極化效應在界面附近自動感應形成高電子濃度與高遷移率的通道,能夠減少RON電阻值。在元件結構中,利用Field Plate技術分散蕭特基電極邊緣的電場並藉由DESSIS軟體模擬元件的內部電場分佈,獲得最佳化FP氮化矽厚度並製作蕭特基二極體元件。在800nm厚度下,可達到475V的崩潰電壓,此元件在室溫下的VF與RON,分別為2.4V與13mΩ-cm2,評量因子(F.O.M)為17.1MW/cm2。40 finger指叉型AlGaN/GaN蕭特基二極體,在外加3.5V時,可以得到2.5A的順向電流輸出,元件崩潰電壓可達436V。當元件輸入4A順向電流時,蕭特基二極體逆向回復時間(trr)約15ns比Si元件的30ns降低一半。
摘要(英) It is the goal that the global various countries have wanted to reach all the time to pursue the electric supply and demand of high quality, a large number of construction power plants do not solve the way of the problem, but should improve the efficiency of the electric equipment products. In this thesis, we studied on GaN Schottky diodes with mesa-type n-GaN and planar-type AlGaN/GaN, operating at high forward current and high breakdown voltage. In Mesa-type n-GaN Schottky diodes, having a drift region of 2.8?m thickness and doping concentration of 5×1016/cm3, show a breakdown voltage of about 190V. We report I-V characteristics, both at room temperature and in the temperature range 300 to 423K, of Mesa type GaN Schottky diodes fabricated on expitaxial layers incorporating double GaN/SiN nucleation layers.
For a more significant reduction of the on-state resistance, AlGaN/GaN heterostrure devices are attractive due to their high mobility and high carrier density of two-dimensional electron gas at the AlGaN/GaN interface. In planar-type AlGaN/GaN Schottky diodes, we studied simulation and fabrication of AlGaN/GaN rectifiers with field plate termination. The extent of metal electrode overlap and dielectric thickness were varied to ascertain their effects on the BV. The circular devices show on-resistance (Ron) of about 13m?-cm2. The experimental breakdown data shows that there is an optimum Si3N4 thickness for which the breakdown voltage (BV) is highest and on either side of this optimum Si3N4 thickness, the BV voltage decreases. In the present case, the highest BV of about 475V is obtained when silicon nitride thickness is around 800nm and the Schottky diodes exhibit a figure of merit (VB2/Ron) of about 17MW/cm2. The 40 finger-type AlGaN/GaN Schottky diodes with wire bonding obtained a forward current 2.5A at an applied forward voltage of 3.5V, and BV of about 436V. In reverse recovery characteristics of the finger-type AlGaN/GaN Schottky rectifiers, when the diode was switched from forward to reverse bias, the device exhibited an ultrafast switching time (trr) 15ns less than 30ns of Si-based device.
關鍵字(中) ★ 高崩潰電壓
★ 蕭特基二極體
★ 氮化鎵
關鍵字(英) ★ High breakdown voltage
★ Schottky diodes
★ GaN
論文目次 第一章 緒論 1
1.1前言 1
1.2氮化鎵蕭特基二極體元件的發展概況 4
1.3 研究動機 7
第二章 蕭特基二極體元件製作 9
2.1平台式n型氮化鎵蕭特基二極體元件 9
2.1.1元件結構 9
2.1.2 元件製程 10
2.2 平面式FP AlGaN/GaN蕭特基二極體元件 15
2.2.1 元件結構 15
2.2.2 元件製程 16
第三章 平台式n型氮化鎵蕭特基二極體元件特性分析 21
3.1 前言 21
3.2 室溫下之n型蕭特基二極體元件電流-電壓特性分析 23
3.3變溫之n型蕭特基二極體元件電流-電壓特性分析 30
3.4 本章總結 37
第四章FP AlGaN/GaN蕭特基二極體元件的特性分析 38
4.1前言 38
4.2利用DESSIS模擬FP AlGaN/GaN蕭特基二極體元件 41
4.2.1 模擬FP AlGaN/GaN蕭特基二極體之參數 41
4.2.2 模擬結果與討論 44
4.3 FP AlGaN/GaN蕭特基二極體圓形元件之特性分析 56
4.3.1 元件結構 56
4.3.2 順向電流-電壓特性 56
4.3.3 最佳化FP氮化矽厚度之元件崩潰電壓 60
4.3.4 蕭特基二極體達到元件崩潰邊緣的損壞 62
4.3.5 蕭特基二極體之變溫電流-電壓特性分析 64
4.4 FP AlGaN/GaN蕭特基二極體指叉型元件特性分析 68
4.4.1 1-Finger順向電流-電壓特性 68
4.4.2 不同Finger數目的順向電流比較 72
4.4.3 指叉型(40 finger)逆向電流電壓特性 75
4.4.4 FP AlGaN/GaN蕭特基二極體逆向回復特性 78
4.5 本章總結 82
第五章 結論 84
參考文獻 87
參考文獻 [1] Y. F. Wu, B. P. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors”, Appl. Phys. Lett., 69 1438 (1996)
[2] http://www.mdatechnology.net/tech_update.aspx?art=5007
[3] R.T Kemerley, H.B.Wallace, M.N.Yoder, “Impact of wide bandgap microwave devices on DoD systems”, Proc. IEEE 90, 1059, 2002
[4] Ericsen, T,“Future navy application of wide bandgap power semiconductor devices”, Proc. IEEE 90, 1077, 2002
[5] Isaac Cohen, Ting Gang Zhu, Linlin Liu, Michael Murphy, Milan Pophristic, Marek Pabisz, Mark Gottfiied, Bryan S. Shelton, Boris Peres, Alex Ceruzzi, Rick A. Stall, "Novel 600 V GaN Schottky diode delivering SiC performance at Si prices", Applied Power Electronics Conference and Exposition, vol 1, pp.311-314 Vol. 1, 2005
[6] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, “High Voltage GaN Schottky rectifiers”, IEEE Trans. Electron Devices 47, 692 (2000).
[7] B. S. Kang, F. Ren, Y.Irokawa K. W. Baik, S. J. Peartona, C.-C. Pan, G.-T. Chen, and J.-I. Chyi, H.-J. Ko and H.-Y. Lee, “Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates”, J. Vac. Sci. Technol. B 22, 710 (2004).
[8] B. J. Zhang, T. Egawa, G. Y. Zhao, H. Ishikawa, M. Umeno and T. Jimbo, “Schottky diodes of Ni/Au on n-GaN grown on sapphire and SiC substrates”, Appl. Phys. Lett. 79, 2567 (2001).
[9] Z. Z. Bandic, D. M. Bridger, E. C. Piquette, R. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, ” High voltage (450V) GaN Schottky rectifiers”, Appl. Phys. Lett. 74, 1266 (1999).
[10] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, N. V. Govorkov, J. M. Redwing, X. A. Cao, and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett. 76, 1767 (2000).
[11] A. P. Zhang, G. T. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, H. Cho, and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett. 76, 3816 (2000).
[12] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. J. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee, and S. J. Pearton, ”Lateral AlxGa1-xN power rectifiers with 9.7kV reverse breakdown voltage”, Appl. Phys. Lett. 78, 823 (2001).
[13] K. H. Baik, Y. Irokawa, Jihyun Kim, J. R. LaRoche, F. Ren, S. S. Park, Y. J. Park and S. J. Pearton, “160-A bulk GaN Schottky diode array”, Appl. Phys. Lett. 83, 3192 (2003).
[14] F. Ren, A. P. Zhang, G. T. Dang, X. A. Cao, H. Cho, S. J. Pearton, J.-I. Chyi, C. M. Lee and C. C. Chuo, “Surface and bulk leakage currents in high breakdown GaN rectifiers”, Solid-State Electron. 44, 619 (2000).
[15] J. W. Johnson, J. R. LaRoch, F. Ren, B. P. Gila, M. E. Overberg, C. R. Abernathy, J. -I. Chyi, C. C. Chuo, T. E. Nee, C. M. Lee, K. P. Lee, S. S. Park, Y. J. Park and S. J. Pearton, “Schottky rectifiers fabricated on free-standing GaN substrates”, Solid-State Electron. 45, 405 (2000).
[16] Seung-Chul Lee, Jin-Cherl Her, Soo-Seong Kim, Min-Woo Ha and Kwang-Seok Seo, “ A new vertical GaN Schottky barrier diode with floating metal ring for high breakdown voltage”, proceeding of 2004 International Symposium on Power Semiconductor Devices & ICs, P-40, 319, (2004).
[17] J. W. Johnson, A. P. Zhang, Wen-Ben Luo, Fan Ren, Stephen J. Pearton, S. S. Park and Jen-Inn Chyi “ Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers”, IEEE Trans. Electron Devices 49, 32 (2002).
[18] Yi Zhou, Mingyu Li, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams and Minseo Parka, “Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery”, Appl. Phys. Lett. 88, 113509 (2006).
[19] Jen-Inn Chyi, C. M. Lee, C.C. Chuo, G. C. Chi, G. T. Dang, A. P. Zhang, Fan Ren, X. A. Cao, S. J. Pearton, S. N. G. Chu and R. G. Wilson, “Growth and device performance of GaN Schottky rectifiers”, MRS Internet J. Nitride Semicond. Res., vol. 4, p. 8, 1999.
[20] L. Voss, S. J. Pearton, F. Ren, Bove, H. Lahreche and J. Thuretc, “Electrical Performance of GaN Schottky Rectifiers on Si Substrates”, Journal of the Electrochemical Society, 153 pp. G681-G684, 2006
[21] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Peaton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. Chu and G. Wilson, “High Voltage GaN Schottky Rectifiers”, IEEE Trans. Electron Devices 47, 692 (2000).
[22] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park and J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Appl. Phys. Lett. 79, 1555 (2001).
[23] E. J. Miller, D. M. Schaadt, E. T. Yu, X. L. Sun, L. J. Brillson, P. Waltereit and J. S. Speck, “Origin and microscopic mechanism for suppression of leakage currents in Schottky contacts to GaN grown by molecular-beam epitaxy”, Journal of Applied Physics, vol. 94, pp. 7611-7615, 2003
[24] Ru-Chin Tu, Chang-Cheng Chuo, Shyi-Ming Pan, Yu-Mei Fan, Ching-En Tsai, and Te-Chung Wang, Chun-Ju Tun and Gou-Chung Chi, Bing-Chi Lee and Chien-Ping Lee, “Improvement of near-ultraviolet InGaN/GaN light-emitting diodes by inserting an in situ rough SiNx interlayer in n-GaN layers”, Appl. Phys. Lett. 83, 3608 (2003)
[25] S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York 1981)
[26] L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J. Redwing, “The role of the tunneling component in the current–voltage characteristics of metal-GaN Schottky diodes”, J. Appl. Phys. 84, 2099, (1998)
[27] J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures”, Appl. Phys. Lett., 62, 705, (1993)
[28] B. J. Baliga, Power Semiconductor Devices. Boston, MA: PWS, 1996.
[29] M. C. Tarplee, V. P. Madangarli, Q. Zhang and T. S. Sudarshan, “Design rules for field plate edge termination in SiC Schottky diodes”, IEEE Transactions on Electron devices, vol. 48, pp. 2659-2664, 2001
[30] J. -I. Chyi, C. -M. Lee, C. -C. Chuo, X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, S. J. Pearton, S. N. G. Chu and R. G. Wilson, “Temperature dependence of GaN high breakdown voltage diodes rectifiers”, Solid-State Electronics, vol. 44, pp. 613-617, 2000
[31] Tugluoglu et al, “Temperature dependence of current–voltage characteristics of Ag/p-SnS Schottky barrier diodes based on I-V-T measurements”, Semiconductor Science Technology, vol. 19, pp. 1092-1097, 2004
[32] Rhoderick et al, Metal-Semiconductor contacts, 2nd ed., Clarendon Press, Oxford, 1988.
[33] J. P. Sullivan, R. T. Tung, M. R. Pinto and W. R. Graham, “Electron transport of inhomogeneous Schottky barriers: A numerical study”, Journal of Applied Physics, vol. 70, pp. 7403-7424, 1991
[34] Sawada et al, “Electrical properties of metal/GaN and SiO2/GaN interface and effect of thermal annealing”, Applied Surface Science, vol. 159-160, pp. 449-455, 2000
[35] Fabio Sacconi et al.,”Spontaneous and Piezoelectric Polarizatoin Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices, VOL. 48, NO3, March 2001.
[36] I.P. Smorchkova et al.,“Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy”, Journal of Applied Physics, Vol 86, Num 8, (4520), 1999.
[37] B.J. Baliga, “Trends in power semiconductor devices”, IEEE Transactions on Electron Devices, Vol. 43, pp. 1717-1731, 1996.
[38] S. Yoshida, H. Ishii, J. Li, D. Wang and M.Ichikawa,” A high-power AlGaN/GaN hetertojunction field effect transistor”, Solid State Electronics, Vol. 47, pp. 589-592, 2003.
[39] M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure”, IEEE Transactions on Electron Devices, Vol. 52, No.9, pp. 1963-1968, September, 2005.
[40] S. Iwakami, M. Yanagihara, O.Machida, E.Chino, N. Kaneko, H.Goto and K. Ohtsuka”, AlGaN/GaN heterostructure field-effect transistors (HFETs) on Si substrates for large-current operation”, Japanese Journal of applied Physics, Vol. 43, pp. L831-L833, 2004.
[41] Z. Lin, Wu Lu, J. Lee, D. Liu, J.S. Flynn and G.R. Brandes, “Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures : Determination and effect of metal work functions”, Applied Physics Letters, Vol. 82, No. 24, pp. 4364-4366, June 2003.
[42] K.J. Schoen, J.M. Woodall, J.A. Cooper and M.R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers”, IEEE Transactions on Electron Devices, Vol. 45, No. 7, pp. 1595-1604, 1998.
[43] N.Q. Zhang, S.Keller, G.Parish, S.Heikman, S.P. DenBaars and U.K.Mishra”, High breakdown GaN HEMT with overlapping gate structure”, IEEE Electron Device Letters, Vol. 21, pp. 421-423, Sept. 2000.
[44] S. Karmalkar and U.K. Mishra,”Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate”, IEEE Transactions on Electron Devices, vol. 48, pp. 1515-1521, Aug. 2001.
[45] W.Saito, Y.Takada, M.Kuraga Chi, K.Tsuda, I.Omura and T. Ogura,”600V AlGaN/GaN power – HEMT: design, fabrication and demonstration on high voltage DC-DC converted”, in IEDM Tech Dig, pp. 587-590, 2003.
[46] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, U.K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates, IEEE Electron Device Letters”, vol. 25, No. 4, pp. 161-163, April 2004.
[47] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura and T. Ogura, “Design and Demonstration of high breakdown voltage GaN High Electron Mobility transistor (HEMT) using field plate structure for power electronics applications”, Japanese Journal of Applied Physics, Vol. 43, No. 4B, pp. 2239-2242, 2004.
[48] W.Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura and T.Ogura, “Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RonA-Vb tradeoff characteristics”, IEEE Transactions on Electron Devices, Vol. 52, No. 1, pp. 106-111, January 2005.
[49] ISE Integrated System Engineering , Release 9.5, part 15.
[50] D. Qiao, L.S. Yu, S.S. Lau, J.M. Redwing, J.Y. Lin and H.X. Jiang, “Dependence of Ni/AlGaN Schottky barrier height on al mole fraction”, Journal of Applied Physics, Vol. 87, No. 2, pp. 801-904, 2000.
[51] Q.Zhang and T.S.Sudarshan, “Lateral current spreading in SiC Schottky diodes using metal overlap edge termination”, Solid State Electronics, Vol. 45, pp. 1847-1850, 2001.
[52] B.J. Baliga, Modern power devices, New York : Wiley, 1987.
[53] Hashizume, J. Kotani, A. Basile and M. Kaneko, “Surface control process of AlGaN/GaN Heterstructure field effect transistors”, Japanese Journal of Applied Physic, Vol. 45, pp. L111-L113, 2006.
[54] T. Nanjo, T. Oishi, M. Suita, Y. Abe, and Y. Tokuda, “Effects of a thin Al layer insertion between AlGaN and Schottky gate on the AlGaN/GaN high electron mobility transistor characteristics”, Applied Physics Letters, Vol. 88, 043503, 2006.
[55] P. Kordos, J. Bernat, D Gregusova, M. Marso and H. Luth, “Impact of surface treatment under the gate on the current collapse of unpassivated AlGaN/GaN heterostructure filed field-effect transistors”, Semiconductor Science and Technology, Vol. 21, pp. 67-61, 2006.
[56] L. Voss, S. J. Pearton, F. Ren, Bove, H. Lahreche and J. Thuretc, “Electrical Performance of GaN Schottky Rectifiers on Si Substrates”, Journal of The Electrochemical Society, 153 pp. G681-G684, 2006.
[57] K. J. Schoen, J. M. Woodall, J. A. Cooper and M. R. Melloch, “Design considerations and experimental analysis of high voltage SiC Schottky barrier Rectifiers”, IEEE Transactions on Electron Devices, Vol. 45, No.7, pp. 1595-1604, July, 1998.
[58] B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra”, Phys. Rev. B 10, 676, 1974.
[59] M. Bhatnagar, Peter K. McLarty and B. J. Baliga, “Silicon carbide high-voltage (400V) Schottky barrier diodes,” IEEE Electron Device Letters, Vol. 13, pp. 501-503, 1992
[60] Vik Saxena, Jian Nong Su and Andrew J. Steckl, “high-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination,” IEEE Electron Device Letters, Vol. 46, pp. 456-464, 1999.
[61] A. Itoh, T. Kimoto, and H. Matsunami, “High performance of high voltage 4H–SiC Schottky barrier diodes,” IEEE Electron Device Letters, vol. 16, pp. 280–282, 1995.
[62] W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors”, Applied Physics Letters, 80, 3207, 2002.
[63] Yi Zhou, Mingyu Li, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams and Minseo Parka, “Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery”, Applied Physics Letters, 88, 113509 (2006).
[64] K. Ip, K. H. Baik, B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park and A. P. Zhang, ” High current bulk GaN Schottky rectifiers,” Solid State Electronics, Vol. 46, pp. 2169-2172, 2002.
[65] M. Trivedi and K. Shenai, “Performance evaluation of high-power wide band-gap semiconductor rectifiers”, Journal of Applied Physics, Vol. 85, No. 9, pp. 6889-6897, 1999.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明