參考文獻 |
[1] D. Lu, D. Rutledge, M. Kovacevic, and J. Hacker, “A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC,” Int. J. Infrared and Millimeter Waves, vol. 23, pp. 693-704, May 2002.
[2] R. S. Elliott, “Beamwidth and directivity of large scanning arrays, first of two parts,” Microwave J., vol. 6, pp. 53-60, Dec. 1963.
[3] H. Hashemi, X. Guan, and A. Hajimiri, “A fully integrated 24 GHz 8-path phased-array receiver in silicon,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004.
[4] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[5] F. Elliger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, March 2004.
[6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[7] K.-W. Yu, Y.-L. Lu, D.-C. Chang, Victor Liang, and M. Frank Chang, “K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Comp. Lett., vol. 14, no. 3, pp. 106-108, March 2004.
[8] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low noise amplifier using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Comp. Lett., vol. 15, no. 7, pp. 448-450, July 2005.
[9] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, June 2000, pp. 17-20.
[10] S.-C. Shin, S.-F. Lai, K.-Y. Lin, M.-D. Tsai, H. Wang, C.-S. Chang, Y.-C. Tsai, “18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2005, pp. 47-50.
[11] Chieh-Min Lo, “Design and Implementation of CMOS Low Noise Amplifiers for WLAN Frequency-Band Applications,” M.S. thesis, Graduate institute of communication engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[12] F. Ellinger, U. Lott, W. Bachtold, “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 1999, pp.197-200.
[13] T. K. K. Tsang, and M. N. El-Gamal, “Gain controllable very low voltage (≦ 1 V) 8-9 GHz integrated CMOS LNA’s,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2002, pp.205-208.
[14] M.-D. Tsai, R.-C. Liu, C.-S. Lin, and H. Wang, “A low-voltage fully-integrated 4.5-6 GHz CMOS variable gain low noise amplifier,” 2003 European Microwave Conference, vol. 1, Oct. 2003, pp. 13-16.
[15] R. Point, M. Mendes, and W. Foley, “A differential 2.4 GHz switched-gain CMOS LNA for 802.11b and Bluetooth,” IEEE Radio and Wireless Conference, Aug. 2002, pp. 221-224.
[16] M. K. Raja, T. T. C. Boon, K. N. Kumar, and W. S. Jau, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2003, pp.439-442.
[17] C.-H. Liao, and H.-R. Chuang, “A 5.7-GHz 0.18 μm CMOS gain-controlled differential LNA with current reuse for WLAN receiver,” IEEE Microwave and Wireless Comp. Lett., vol. 13, pp. 526-528, Dec. 2003.
[18] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, June 1997.
[19] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” 2nd edition, Cambridge 2004.
[20] B. Razavi, “RF Microelectronics,” Upper Saddle River, New Jersey: Prentice Hall, 1998.
[21] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, vol. 32, pp.419-422, July 1944.
[22] C. P. Wen, “Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” Microwave Symp. Dig., G-MTT International, vol. 69, no. 1, May 1969, pp. 110-115.
[23] T. C. Edwards and M. B. Steer, Foundations of Interconnet and Microstrip Design, 3rd edition. New York Wiley, 2000.
[24] Advanced Design System (ADS), Agilent.
[25] F. Ellinger, H. Jackel, “Low-cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption,” IEEE Trans. on MTT, vol. 52, pp. 702-708, Feb. 2004.
[26] Q.Chaudhry, R. Alidio, G. Sakamoto, and T. Cisco, “A SiGe MMIC variable gain cascode amplifier,” IEEE Microwave and Wireless Comp. Lett., vol. 12, pp. 424-425, Nov. 2002.
[27] I. D. Robertson, and S. Lucyszyn, “RFIC and MMIC design and technology,” The Institution of Electrical Engineers, London, United Kingdom, 2001.
[28] M. Fairburn, B. J. Minnes, and J. Neale, "A novel monolithic distributed mixer design", Microwave and Millimetre Wave Monolithic Integrated Circuits, IEE Colloquium on, pp. 13/1-13/6, 11 Nov 1988.
[29] S. A. Maas, "A GaAs MESFET Mixer with Very Low Intermodulation," Microwave Theory and Techniques, IEEE Transactions on vol. 35, no. 4, pp. 425 - 429, Apr 1987.
[30] O. S. A. Tang, C. S. Atchison, "A Practical Microwave Travelling-Wave MESFET Gate Mixer," Microwave Symp. Dig., MTT-S International vol. 85, no. 1, Jun. 1985, pp. 605-608.
[31] On San A. Tang, C. S. Aitchison, “A very wide-band microwave MESFET mixer using the distributed mixer principle,” IEEE Trans. on Microwave Theory and Tech., vol. 33, no. 12, pp. 1470-1478, Dec., 1985.
[32] R. Majidi-Ahy, C. Nishimoto, J. Russell, W. Ou, S. Bandy, and G. Zdasiuk, “23-40 GHz InP HEMT MMIC distributed mixer, “ 1992 International IEEE MTT-S Symp. Dig., vol. 2, June, 1992, pp. 1063-1066.
[33] D. Hollmann, R. Heilig, and G. Baumann, “A monolithic broadband 10-50 GHz distributed HEMT mixer including active LO-RF combiner,” 1994 GaAs IC Symp. Dig., Oct. 1994, pp. 100-103.
[34] K. Deng and H. Wang, “A 3-33 GHz PHEMT MMIC Distributed Drain Mixer,” 2002 IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2002, pp. 151-154.
[35] A. H. Darsinooieh, O. Palamutcuoglu, "On the theory and design of subharmonically drain pumped microwave MESFET distributed mixers," Electrotechnical Conference, 1996. MELECON '96, 8th Mediterranean vol. 1, May 1996, pp. 595-598.
[36] M. Lacon, K. Nakano, and G. S. Dow, “A wide band distributed dual gate HEMT mixer,” 1988 GaAs IC Symp. Dig., Oct. 1988, pp. 173-176.
[37] W. Titus, M. Miller, "2-26 GHz MMIC frequency converter," GaAs IC Symp., 1988. Technical Digest 1988, 10th Annual IEEE, Nov. 1988, pp. 181-184.
[38] T. S. Howard, A. M. Pavio, "A Distributed 1-12 GHz Dual-Gate FET Mixer," Microwave Symp. Dig., MTT-S International vol. 86, no. 1, June, 1986, pp. 329-332.
[39] K. S. Ang and I. D. Robertson, “Multiple-FET mixer analysis with applications to the cascode distributed mixer,” 1999 High Frequency Postgraduate Student Colloquium, Sept. 1999, pp. 22-27.
[40] I. D. Robertson, A. H. Aghvami, "A novel 1 to 14 GHz monolithic matrix distributed FET mixer," Proceeding of the 21st European microwave conference, Sept. 1991, pp. 489-494.
[41] W. Titus, Y. Tajima, R. A. Pucel, A. Morris, “Distributed monolithic image rejection mixer,” 1986 GaAs IC Symp. Dig., pp. 191-194.
[42] Won Ko and Youngwoo Kwon, “A GaAs-Based 3-40 GHz Distributed Mixer with Cascode FET Cells,” 2004 IEEE Radio Frequency Integrated Circuits Symp. Dig., June, 2004, pp. 413-416.
[43] K. S. Ang, S. Nam, and I. D. Robertson, “A 2 to 18 GHz monolithic resistive distributed mixer,” Proceedings of European Microwave Conference, Munich, Germany, 1999, pp. 222-225.
[44] I. D. Robertson, A. H. Aghvami, “A practical distributed FET mixer for MMIC applications,” Microwave Symp. Dig., 1989., IEEE MTT-S International vol.3, June, 1989, pp. 1031-1032.
[45] J. B. Beyer and S. N. Prasad, “MESFET Distributed Amplifier Design Guidelines,” IEEE Trans. On Microwave Theory and Tech., Vol. MTT-32, No.3, pp. 268-275, March 1984.
[46] B.Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw, Inc. 2001.
[47] R.-C. Liu, H.-Y. Chang, C.-H. Wang, and H. Wang, “A 63-GHz VCO using a standard 0.25-μm CMOS process,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, pp. 372-373, 2004.
[48] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. Gutierrez-Aitken, F. Yamada, T. R. Block, D. C. Streit, “A 108-GHz InP-HBT monolithic push-push VCO with low phase noise and wide tuning bandwidth,” IEEE J. Solid-State Circuits, vol. 34, pp. 1225-1232, Sept. 1999.
[49] D. M. Pozar, “Microwave Engineering,” 3rd edition, John Wiley & Sons. 2005.
[50] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[51] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, Feb. 1966, pp. 329-330.
[52] Yi-Hsien Cho, “Design of Microwave and Millimeter-wave CMOS VCOs,” M.S. thesis, Graduate institute of communication engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[53] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S International Microwave Symp. Dig., June 1992, pp. 297-300.
[54] R. G. Freitag, S. H. Lee, D. M. Krafcsik, D. E. Dawson, J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers,” Microwave and Millimeter-Wave Monolithic Circuits Symposium, May 1988, pp. 125-128.
[55] Y.-H. Cho, M.-D. Tsai, H.-Y. Chang, C.-C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” in IEEE Radio Frequency integrated Circuits Symp. Dig. June 2005, pp. 131-134.
[56] A. Scuderi, and G. Palmisano, “A Low-Phase-Noise Voltage-Controlled Oscillator for 17-GHz Applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, April 2006.
[57] C.-M. Hung, L. Shi, I. Laguado, and K. K. O, “A 25.9-GHz voltage-controlled oscillator fabricated in a CMOS process,” Symp. VLSI Circuits Dig. Tech. Papers. June 2000, pp.100-101.
[58] J. P. Carr, and B. M. Frank, “A 38 GHz accumulation MOS differentially tuned VCO design in 0.18-μm CMOS,” Silicon Monolithic Integrated Circuits in RF Systems, Dig. of Papers. Jan. 2006, pp. 170-173.
[59] J.-O. Plouchart, J. Kim, N. Zamdmer, M. Sherony, Y. Tan, M. Yoon, M. Talbi, A. Ray, and L. Wagner, “A 31 GHz CML ring VCO with 5.4 ps delay in a 0.12-μm SOI CMOS technology,” IEEE European Solid-State Conf., Sep. 2003. pp. 357-360.
[60] J.-H. C. Zhan, J. S. Duster, and K. T. Kornegay, “A 25-GHz emitter degenerated LC VCO,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2062-2064, Nov. 2004.
[61] N. Saniei, H. Djahanshahi, C. A. T. Salama, “25 GHz inductorless VCO in a 45 GHz SiGe technology,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. June 2003, pp. 269-272.
[62] W. L. Chan, H. Veenstra, J. R. Long, “A 32 GHz quadrature LC-VCO in 0.25-μm SiGe BiCMOS technology,” International Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, Feb. 2005, pp. 538-616.
[63] Hai Xiao, T. Tanaka, and M. Aikawa, “Push-push oscillator with simplified circuit structure,” Electronics Lett. vol. 38, no. 24, pp. 1545-1547, Nov. 2002. |