博碩士論文 93521058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.191.215.138
姓名 連婉茹(Wan-Ru Lian)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 V頻段微型化混頻器之研製
(Design and Implementation of V-Band Miniature Mixers)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究毫米波V頻段微型化混頻器,論文內混頻器主要架構為次諧波電阻性混頻器、次諧波共平波導二極體混頻器與次諧波鏡像抑制混頻器,頻率操作在V頻段,其中次諧波鏡像抑制混頻器包含一微小化馬遜平衡器設計。以上電路皆是以WIN 0.15 μm pHEMT製程研製。
次諧波電阻性混頻器主要是利用一對汲極端相接之電晶體,並於閘極使用基本型馬遜平衡器提供0o與180o相位差以饋入本地振盪訊號,射頻訊號經由功率分配器饋入電晶體之汲極與本地振盪訊號混頻,再經由射頻與中頻之分頻電路取出中頻訊號。本電路可提供良好的本地振盪至射頻訊號隔離度與本地振盪至中頻隔離度,並可抑制高次項諧波,得到一良好的轉換損耗與較小尺寸之混頻器。次諧波共面波導二極體混頻器為利用有限地之共面波導作為傳輸線,可減少傳輸線之輻射損耗、抑制高次項模態並可增加佈局的方便性。次諧波鏡像抑制混頻器包含兩組單平衡次諧波混頻器並使用微小化雙巴倫提供兩組單平衡次諧波混頻器本地振盪端之0o與180o相位差,射頻利用藍吉耦合器提供90o相位差,中頻埠則利用設置於晶片外之90o 混合電路結合兩組單平衡次諧波混頻器之中頻訊號。於此電路中針對雙巴倫做微小化設計,相較於基本型之雙巴倫將節省76%的面積,因此得到一極小面積之次諧波鏡像抑制混頻器。
經由量測,次諧波電阻性混頻器於射頻頻率52 GHz時的轉換損耗為13.22 dB,輸入1-dB壓縮點為3 dBm,輸入三階交互調變交叉點為22 dBm,本地振盪對中頻訊號隔離度大於40 dB,本地振盪對射頻隔離度大於35 dB,射頻對中頻隔離度大於15 dB。次諧波共平面波導二極體混頻器的在射頻頻率為60 GHz時,於升頻模式中轉換損耗為12.75 dB,當中頻功率為3 dBm時發生功率1-dB壓縮點;而在降模式中轉換損耗為14.71 dB,當射頻功率為5 dBm時發生功率1-dB壓縮點,IIP3為28 dBm,本地振盪至射頻隔離度在所操作的頻段中皆大於20 dB,而本地振盪至中頻隔離度則大於15 dB,中頻對射頻隔離度大於15 dB。次諧波鏡像抑制混頻器於射頻頻率為42.5 GHz且中頻頻率為2.4 GHz時的轉換損耗為8.4 dB,輸入1-dB壓縮點為2.5 dBm,輸入三階交互調變交叉點為26 dBm,埠對埠訊號隔離度大於25 dB,鏡像抑制比為26.2 dB。
摘要(英) This thesis investigates V-band miniature mixers. The topology of mixer includes sub-harmonically pumped resistive mixer, CPW sub-harmonically pumped diode mixer and sub-harmonically pumped image rejection mixer. All of the mixers are operated frequency at V-band. The sub-harmonically pumped image rejection mixer contains a miniature Marchand balun. These circuits were fabricated by Win Semiconductor 0.15 μm GaAs pHEMT technology.
The sub-harmonically pumped resistive mixer was connected drains of a pair of transistors. The LO signal was used fundamental Marchand Balun to offer the 0o and 180o differential phases at gate. The RF signal at drain was fed by Power divider and mixed with LO signal, and then used diplexing circuit to draw out the IF signal. This work can provide good LO to IF isolation, LO to RF isolation and suppress high order harmonics. This mixer has a good conversion loss and miniature chip size. The CPW sub-harmonically pumped diode mixer was used finite ground CPW that can reduce radiation loss, suppress high order harmonics and be more convenient to layout. The sub-harmonically pumped image rejection mixer contained two single-balanced sub-harmonically mixers and the LO signal fed by a miniature dual Balun to offer the 0o and 180o differential phases. The RF signal was fed by Lange coupler to offer 90o phase shift. The IF port was fed by 90o hybrid circuit to combine two single-balanced sub-harmonically mixers’ IF signal, which was out of chip. This work has a miniature dual Balun saving the 76% area from fundamental dual Balun. Therefore, the mixer is a miniature area sub-harmonically pumped image rejection mixer.
The measured results of mixers are as follows; for the sub-harmonically pumped resistive mixer, the conversion loss is 13.22 dB, input power at the 1-dB gain compression point is 3 dBm, input third order intermodulation intercept point is 22 dBm, LO to IF isolation is greater than 40dB, LO to RF isolation is greater than 35 dB, and RF to IF isolation is greater than 15 dB. For CPW sub-harmonically pumped diode mixer, in up-converter operation, the conversion loss is 12.75 dB, input power at the 1-dB gain compression point is 3 dBm. In down-converter operation, the conversion loss is 14.71 dB, input power at the 1-dB gain compression point is 5 dBm, input third order inter-modulation intercept point is 28 dBm, LO to IF isolation is greater than 15 dB, LO to RF isolation is greater than 20 dB, and RF to IF isolation is greater than 15 dB. The frequency of sub-harmonically pumped image rejection mixer is shifted to 42.5 GHz The measured conversion loss is 8.4 dB, input power at the 1-dB gain compression point is 2.5 dBm, input third order inter-modulation intercept point is 26 dBm, port to port isolations are greater than 25 dB, and best image rejection rate is achieved as 26.2 dB.
關鍵字(中) ★ 次諧波混頻器
★ 毫米波
★ 混頻器
關鍵字(英) ★ sub-harmonic mixer
★ mixer
論文目次 摘要…………………………………………………………………………………..Ⅱ
目錄…………………………………………………………………………………..Ⅶ
表目錄………………………………………………………………………………..Ⅸ
圖目錄………………………………………………………………………………..Ⅹ
第一章 緒論 1
1.1 研究動機 1
1.2 研究成果 2
1.3 章節概述 4
第二章 混頻器設計原理 5
2.1 混頻器簡介與原理 5
2.2 混頻器重要規格參數 6
2.3 混頻器各種架構與比較 12
第三章 馬遜平衡器之設計與實現 19
3.1 馬遜平衡器之介紹 19
3.2 馬遜平衡器之基本原理與設計 21
3.2.1 平行耦合線介紹 21
3.2.2 平面式馬遜平衡器基本原理 26
3.2.3 平面式馬遜平衡器之設計 29
3.3 縮小化之平面式馬遜平衡器 31
第四章 V頻段次諧波電阻性混頻器 34
4.1場效電晶體電阻性混頻器 34
4.2 電路架構與原理 36
4.3 設計流程 40
4.4 量測結果 41
4.5結果討論 48
第五章 共平面波導次諧波二極體混頻器 49
5.1 共平面波導簡介 49
5.2二極體混頻器 51
5.3電路架構與原理 53
5.4 設計流程 55
5.5 量測結果 56
5.6 結果討論 66
第六章 次諧波鏡像抑制混頻器 68
6.1 鏡像抑制混頻器 68
6.2 電路架構與原理 71
6.3 設計流程 75
6.4 量測結果 77
6.5結果討論 85
第七章 結論 86
參考文獻 88
參考文獻 [1] S.E Gunnarsson, H. Zirath, “A 60 GHz MMIC dual-quadrature mixer in pHEMT technology for ultra wideband IF signals and high LO to RF isolation,” Microwave Symposium Digest, 2005 IEEE MTT-S International, pp. 4,2005
[2] S. Gunnarsson, D. Kuylenstierna, H. Zirath,” A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, Vol. 1, pp. 4,2005
[3] M.F. Lei, P.S. Wu, T.W. Huang, H. Wang, ”Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” Microwave Symposium Digest, 2005 IEEE MTT-S International, Vol. 1, pp. 235-238, 2004.
[4] M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, K.A.I. Halonen, ”Resistive HEMT mixers for 60-GHz broad-band telecommunication,” Microwave Theory and Techniques, IEEE Transactions on, Vol. 53, pp. 1322-1330, 2005.
[5] S.E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, C. Fager, ”Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” Solid-State Circuits, IEEE Journal, Vol. 40, pp. 2174 - 2186, 2005.
[6] M. W. Chapman, S. Raman, “A 60-GHz uniplanar MMIC 4/spl times/ subharmonic mixer,” IEEE Trans. Microwave Theory and Tech., vol. 50, Issue 11, pp.2580-2588, Nov. 2002
[7] K.W. Yeom, D.H. Ko,“A Novel 60-GHz Monolithic Star Mixer UsingGate Drain-Connected pHEMT Diodes,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 7, JULY 2005.
[8] S. Gunnarsson, D. Kuylenstierna, H. Zirath, ” A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” APMC2005 Proceedings Volume 1, Page(s):4 pp. 4-7 Dec. 2005
[9] M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, K.A.I. Halonen,” Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microwave Theory Tech, Volume 53, Issue 4, Part 1, Page(s):1322 – 1330 , April 2005
[10] M.Q. Lee, S.M. Moon, K.K. Ryu, D.P. Jang, I.B. Yom, ”Subharmonically Pumped Image Rejection Mixer for K-Band Applications,” Gallium Arsenide applications symposium. GAAS, 11—12 Ottobre, Amsterdam, 2004
[11] K. Fujii, et al., “A 60 GHz MMIC chipset for 1-Gbit/s wireless links,” IEEE MTT-S International Microwave Symposium Digest, 2002, Volume: 3, 2-7, Pages: 1725 – 1728, June 2002.
[12] S.A. Maas.” Microwave Mixers,” Artech House, 1993.
[13] C.Y. Ho, R. Traynor, ”New analysis Technique Builds Better Baluns,” Microwaves and RF, Vol. 24, pp.339-344, Aug 1985.
[14] M. Rajesh, J. B Inder, B.Prakash, “ RF and microwave coupled-line circuits,” Artech House,1999.
[15] H. Zirath, I. Angelov, N. Rorsman, ” A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[16] K.S. Ang, A.H. Baree, S. Nam, I.D. Robertson, ” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” Microwave Conference, 1999 Asia Pacific , Volume: 2 , Nov 1999
[17] R.S. Virk, L. Tran, M. Matloubian, M. Le, M.G. Case, C. Ngo, ” A comparison of W-band MMIC mixers using InP HEMT technology,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 2 , 8-13 Jun 1997
[18] N.S. Rainee, “Coplanar Waveguide Circuit, Components, and System,” Wiley-Interscience, A John Wiley & Sons, Inc. Publication.
[19] C.R. Paul, “Introduction to Electromagnetic Compatibility,” John Wiley & Sons,1992.
[20] S. A. Maas, “The RF and microwave circuit design cookbook,” Artech House, 1998
[21] D. Robertson, S. Lucyszyn, “RFIC and MMIC design and technology,” London, Institution of Electrical Engineers, 2001
[22] S.A. Maas, “A GaAs MESFET Balanced Mixer with Very Low Intermodulation,” Microwave Symposium Digest, MTT-S International
Volume 87, Issue 2, pp.895 – 898, 1994.
[23] K.S. Ang, A.H. Baree, S. Nam, I.D. Robertson ,” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” Microwave Conference, 1999 Asia Pacific , Volume: 2 , Nov 1999
[24] H. Zirath, I. Angelov, N. Rorsman, ,” A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[25] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Trans. Microwave Theory Tech., vol. 17, pp. 1087-1090, Dec. 1969
[26] K. Hettak, G.A. Morin, M.G. Stubbs, “Compact MMIC CPW and Asymmetric CPS Branch-Line Couplers and Wilkinson Dividers Using Shunt and Series Stub Loading”Microwave Theory and Techniques, IEEE Transactions onVolume53, Issue 5, pp.1624 – 1635, May 2005.
[27] M. Mradmanesh, N. A. Barakat, “State of the art S-band resistive FET mixers,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1435–1438, 1994.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明