博碩士論文 92322024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.116.195
姓名 陳振邦(C-B Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考慮LRFD構材強度與使用性需求之鋼結構輕量化設計
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是使用離散拉格朗日法(Discrete Lagrangian Method, DLM)針對鋼結構構架進行輕量化設計,最佳化設計的束制條件是根據AISC-LRFD規範之局部挫屈及強度檢核公式來建立,構材斷面則限制由AISC-LRFD設計手冊中的型鋼斷面選取。構架系統可為斜撐構架或空構架,斜撐型式為對角斜撐以及K型斜撐。結構分析時採線性分析,並可考慮P-D效應。平面鋼構架的設計結果顯示:含K型斜撐的鋼構架雖可大幅度降低其結構重量,但因柱構材的勁度相對較低,易於過早形成塑鉸,故透過非線性側推分析的結果顯示構架的極限側向變位反而降低。另外,在本研究的算例中,P-D效應的影響並不明顯,以單跨十層樓平面構架的算例為例,設計時考慮P-D效應只會使得結構重量較重約2%,差異並不大。會造成此P-D效應影響較小的原因,主要是設計時考慮樓層相對位移的束制條件,使得P-D效應的影響因而降低。
摘要(英) In this report, the minimum weight design of 2-D and 3D steel frameworks using the discrete Lagrangian method (DLM) is presented. The strength and serviceability requirements specified in the AISC-LRFD specifications are used to construct the constraint functions for the design problems. All the members are selected from the standard hot-rolled steel sections available in the AISC-LRFD design manual. The structural systems can be braced and unbraced steel frameworks. Linear-elastic analysis, with or without P-D effect, are implemented in the DLM design procedure. Several benchmark problems are designed using the proposed DLM searching procedure. Comparison of DLM design results with those presented in the literature are discussed. The optimum weight and ultimate lateral load capacities of diagonal-braced, K-braced and unbraced steel frameworks are also discussed in this report. It is shown that the final weight of the designed frameworks with K-bracings is the lowest; while its ultimate lateral displacement is also the lowest one. Because story drift constraint has been considered in the design, the optimum weights of the designed structures are not significantly influenced by the P-D effect.
關鍵字(中) ★ 輕量化設計
★ 鋼結構構架
★ P-Δ效應
★ 離散拉格朗日法
★ LRFD
關鍵字(英) ★ steel frameworks
★ minimum weight design
★ P-D effect
★ discrete Lagrangian method
★ LRFD
論文目次 中文摘要I
英文摘要III
目錄V
表目錄VII
圖目錄XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 4
1.3 研究範圍 24
第二章 最佳化設計 27
2.1 最佳化問題之數學模型 27
2.2 最佳化設計基本理論 28
2.3 離散拉格朗日法 29
2.3.1 加權離散拉格朗日函數 29
2.3.2 轉換函數 30
2.3.3 鄰點 30
2.3.4 離散梯度 32
2.3.5 離散鞍點 34
2.3.6 收斂準則與一階搜尋公式 35
2.3.7 DLM搜尋程序 38
第三章 極限設計法與構材束制條件 41
3.1 載重係數與載重組合 42
3.2 局部挫屈 43
3.3 受撓構材之強度 44
3.3.1 撓曲強度 45
3.3.2 剪力強度 47
3.3.3受撓構材強度檢核流程圖 48
3.4梁柱構材 49
3.4.1 有效長度係數 49
3.4.2 設計受壓強度 50
3.4.3 對稱構材承受彎矩及軸力之作用 51
3.4.4 梁柱構材檢核流程圖 53
3.5 斜撐構材 54
3.5.1 斜撐構材檢核流程圖 54
第四章 數值範例與參數研究 57
4.1 範例一 雙跨三層樓平面構架A 57
4.1.1 基本設計資料 57
4.1.2 DLM設計結果 58
4.1.3 參數研究:P-Δ效應之影響 60
4.1.4 含斜撐構架之設計 60
4.2 範例二 雙跨三層樓平面構架B 62
4.2.1 基本設計資料 62
4.2.2 DLM設計結果 64
4.2.3 含斜撐構架之設計 65
4.3 範例三 單跨十層樓平面構架 66
4.3.1基本設計資料 67
4.3.2 與Pezeshk et al.(2000)設計結果之比較 68
4.3.2.1 參數研究:P-Δ效應之影響 73
4.3.2.2 含斜撐之設計 73
4.3.3 與Charles et al.(2005)設計結果之比較 84
4.3.4 同時考慮靜載重與活載重之DLM設計結果 90
4.4 範例四 單層樓8桿三維構架 96
4.4.1 基本設計資料 96
4.4.2 設計結果 99
4.5 範例五 四層樓84桿三維構架 100
4.5.1 基本設計資料 100
4.5.2 設計結果 104
4.6 範例六 雙層樓26桿三維構架 105
4.6.1 基本設計資料 105
4.6.2 設計結果 108
第五章 結論與建議 111
5.1 結論 111
5.2 未來研究方向 112
參考文獻 115
附錄A 範例三單跨十層樓平面構架細部資料 126
附錄B 範例三單跨十樓平面構架非線性側推分析塑鉸分佈圖 190
附錄C 範例六雙層樓26桿三維構架細部資料 198
附錄D 斷面資料庫 212
附錄E P-Δ效應與幾何勁度矩陣 233
參考文獻 1. Al-Salloum, Y. and Siddiqi, H. (1993), “Optimum Design of Frames Under Alternate Loading Condition”, Canadian Journal of Civil Engineering, Vol. 20, No. 5, pp. 778-786.
2. American Institute of Steel Construction. (1994), Manual of Steel Construction : Load and Resistance Factor Design, 2d ed. Chicago.
3. Arora, J. S. (2002), “Methods for Discrete Variable Structural Optimization,” In S.A. Burns (ed.), Recent Advances in Optimal Structural Design, ASCE, pp. 1-40.
4. Arora, J. S. and Govil, A. K. (1977), “An Efficient Method for Optimal Structural Design by Substructures”, Computers and Structures, Vol. 7, pp. 507-515.
5. Arora, J. S. and Huang, M. W. (1996), “Discrete Structural Optimization with Commercially Available Sections”, Structural Engineering / Earthquake Engineering, Vol. 13, No. 2, pp. 105-122.
6. Arora, J. S. and Huang, E. J. and Rim, K. (1975), “Optimal Design of Plane Frames”, Journal of Structural Division, ASCE, Vol. 101, No.10, pp. 2063-2078.
7. Balling, R. J. (1991), “Optimal Steel Frame Design by Simulated Annealing”, Journal of Structural Engineering, Vol. 117, No. 6, pp. 1780-1795.
8. Bigelow, R. H. and Gaylord, E. H. (1967), “Design of Steel Frames for Minimum Weight”, Journal of Structural Division, ASCE, Vol. 93, No. St6, pp. 109-131.
9. Blum, C. (2003), “Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison”, ACM Computing Surveys, Vol. 35(3), pp. 268-308.
10. Brown, D. M. and Ang, A. H. (1966), “Structural Optimization by Non-linear Programming”, Journal of Structural Division, ASCE, Vol. 92, No. ST6, pp. 319-340.
11. Burns, S.A. (2002), Recent Advances in Optimal Structural Design, ASCE.
12. Calafell, D. O. and Willmert, K. D. (1977), “Automated Resizing Optimization of Generally Loaded Frames via Linear Programming Techniques”, Proceedings of the symposium on application of computer methods in engineering , University of Southern California, Los Angeles.
13. Cameron, G. E., Xu, L. and Grierson, D. E. (1991), “Discrete Optimal Design of 3D Frameworks”, ASCE Structural Congress-10th Electronic Computation Conference, pp. 181-188, Indianapolis, Indiana.
14. Cammaert, A. B. (1971), “The Optimal Design of Multi-storey Frames Using Mathematical Programming”, Ph.D. thesis, University of Cambridge, Queens College, Cambridge, UK.
15. Camp, C. V. and Bichon, B. J. (2004), “Design of Space Trusses Using Ant Colony Optimization”, Journal of Structural Engineering, Vol. 130, No. 5, pp. 741-751.
16. Camp, C., Pezeshk, S. and Cao, G. (1998), “Optimized Design of Two-dimensional Structures Using a Genetic Algorithm”, Journal of Structural Engineering, Vol. 124, No. 5, pp. 551-559.
17. Chan, C.-M. (1992), “An Optimality Criteria Algorithm for Tall Steel Building Design Using Commercial Standard Sections”, Structural Optimization, Vol. 5, pp. 26-29.
18. Chan, C.-M., Grierson, D. E. and Sherbourne, A. N. (1995), “Automatic Optimal Design of Tall Steel Building Frameworks”, Journal of Structural Engineering, Vol. 121,No. 5, pp. 838-847.
19. Chan, C.-M., Sherbourne, A. N. and Grierson, D. E. (1994), “Stiffness Optimization Technique for 3D Tall Steel Building Frameworks Under Multiple Lateral Loadings”, Engineer Structures, Vol. 16, No. 8, pp. 570-576.
20. Chen, S. Y. (1997), “Using Genetic Algorithms for the Optimal Design of Structural Systems,” PhD. Dissertation, Arizona State University.
21. Chen, S-Y. and Rajan, S. D. (1999), “Using Genetic Algorithm as an Automatic Structural Design Tool”, Short Paper Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Vol. 1, 263-265, Buffalo, NY.
22. Cheng, F. Y. and Botkin, M. E. (1976), “Nonlinear Optimum Design of Dynamic Damped Frames”, J. Struct. Div., ASCE, Vol. 102, pp. 609–628.
23. Cheng, F. Y. and Juang, D. S. (1988), “Assessment of Various Code Provisions Based on Optimum Design of Steel Structures”, Earthquake Engineering and Structural Dynamics, Vol. 16, No. 1, pp. 52-57.
24. Cheng, F. Y. and Juang, D. S. (1989), “Recursive Optimization for Seismic Steel Frames”, Journal of Structural Engineering, Vol. 115, No. 2, pp. 445-466.
25. Charles, V. C., Barron, J. B. and Scott, P. S. (2005), “Design of Steel Frames Using Ant Colony Optimization”, Journal of Structural Engineering, Vol. 131, No.3, March 1.
26. Cornell, C. A. (1966), “Examples of Optimization in Structural Design”, Report R65-26, University of Waterloo, Canada.
27. Ding, Y. and Esping, D. J. (1986), “Optimum Design of Beams with Different Cross Sectional Shapes”, Computers and Structures, Vol. 24, pp. 707-726.
28. Fogel, L. J. (1999), Intelligence Through Simulated Evolution (Forty years of evolutionary programming), Wiley Series on Intelligent Systems.
29. Foley, C. M. and Schinler, D. (2003), “Automated Design of Steel Frames Using Advanced Analysis and Object-Oriented Evolutionary Computation”, Journal of Structural Engineering, Vol. 129, No. 5.
30. Frbatur, R. and Al-Hussainy, M. M. (1992), “Optimum Design of Frames”, Computers and Structures, Vol. 45, No. 5-6, pp. 887-891.
31. Grierson, D. E. (1996), “Automated Conceptual Design of Structural System”, In: Topping, B. H. V. (ed.), Advances in Computational Structures, pp. 157-162, Civil-Comp Press, Edinburgh.
32. Grierson D. E. and Chan, C. M. (1993), “Optimality Criteria Design Method for Tall Steel Buildings”, Advances in Engineering Software, Vol. 16, no. 2, pp. 119-125.
33. Grierson, D. E. and Lee, W. H. (1984), “Optimal Synthesis of Steel Frameworks Using Standard Sections”, Journal of Structural Mecbanics, Vol. 12, No. 3, pp. 335-370.
34. Grierson, D. E. and Lee, W. H. (1986), “Optimal Synthesis of Frameworks Under Elastic and Plastic Performance Constraints Using Discrete Sections”, Journal of Structural Mecbanics, Vol. 14, No. 4, pp. 401-420.
35. Grierson, D. E. and Pak, W. H. (1993), “Discrete Optimal Design Using a Genetic Algorithm”, In: Bendnsoe, M.P. and Mota Soares, C.A. (eds.), Topology Design of Structures, pp. 89-102, Kluwer Acadimica Publishers, The Netherlands.
36. Gulay, G. and Boduroglu, H. (1989), “An Algorithm for the Optimum Design of Braced and Unbraced Steel Frames Under Earthquake Loading”, Earthquake Engineering and Structural Dynamics, Vol. 18, pp. 121-128.
37. Hager, K. and Balling, R. J. (1988), “New Approach for Discrete Structural Optimization”, Journal of Structural Engineering, Vol. 114, No. 5, pp. 1120-1134.
38. Hajela, P. (1989), “Genetic Search – an Approach to the Nonconvex Optimization Problem”, Proceeding of the 30th conference AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials, Mobile, Atlanta, pp. 165-175, AIAA, Reston.
39. Hajela, P. (1990), “Genetic Search – an Approach to the Nonconvex Optimization Problem”, AIAA Journal, Vol. 28, No. 7, pp. 1205-1210.
40. Hajela, P. and Lin, C. Y. (1992a), “Genetic Search Strategies in Multicriterion Optimal Design”, Structural Optimization, Vol. 4, pp. 99-107.
41. Hajela, P. and Lin, C. Y. (1992b), “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables”, Engineering Optimization, Vol. 19, pp. 309-327.
42. Hall, S. K., Cameron, G. E., and Grierson, D. E. (1989), “Least-Weight Design of Steel Frameworks accounting for P-Δ effects”, Journal of Structural Engineering, Vol. 115, pp. 1463-1475.
43. Hayalioglu, M. S. (2001), “Optimum Load and Resistance Factor Design of Steel Space Frames Using Genetic Algorithm”, Structural and Multidisciplinary Optimization , Vol. 21, pp. 292-299.
44. Hayalioglu, M. S. and Saka, M. P. (1992), “Optimum Design of Geometrically Nonlinear Elastic-plastic Steel Frames with Tapered Members”, Computers and Structures, Vol. 44, No. 4, pp. 915-924.
45. Hernandez, S. (1998), “Optimum Design of Steel Structures”, Journal of Construction Steel Research, Vol. 46, No. 1-3, pp. 374-378.
46. Huang, M. W. (1995), “Algorithms for Mixed Continuous-Discrete Variable Problems in Structural Optimization”, Ph.D Dissertation, Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, U.S.A.
47. Huang, M. W. and Arora, J. S. (1997), “Optimal Design with Discrete Variables : Some Numerical Experiments”, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 165-188.
48. Jenkins, W. M. (1997), “On the Application of Natural Algorithms to Structural Design Optimization”, Engineering Structures, Vol. 19, No. 4, pp. 302-308.
49. Juang, D. S., Wu, Y. T., and Chang, W. T. (2003), “Optimum Design of Truss Structures Using Discrete Lagrangian Method”, Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, pp. 755-766.
50. Juang, D. S. and Yao, H. H. (1987), “Optimum Design of Flexibly Connected Steel Frames”, Proceedings of the 11th Conference on Theoretical and Applied Mechanics, Vol. 2, pp. 1207-1216, Chung-li, Taiwan.
51. Kamal, C. S. and Hojjat, A. (2000), “Fuzzy Genetic Algorithm for Optimization of Steel Structures”, Journal of Structural Engineering, Vol. 126, No. 5.
52. Karihaloo, B. L. and Kanagasundram S. (1989), “Minimum Weight Design of Structural Frames”, Computers and Structures, Vol. 31, No. 5, pp. 647-655.
53. Khan, M. R., Willmert, K. D. and Thornton, W. A. (1979), “An Optimality Criterion Method for Large Scale Structures”, AIAA Journal, Vol. 17, pp. 753-761.
54. Kim, S-E., Choi, S.-H., Kim, C.-S. and Ma, S.-S. (2004), ”Automatic Design of Space Steel Frames Using Practical Nonlinear Analysis”, Thin-Walled Structures, Vol. 42, pp. 1273-1291.
55. Kincaid, R. K. and Padula, S. L. (1990), “Minimising Distortion and Internal Forces in Truss Structures by Simulated Annealing”, Proceeding of the AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., Part 1, pp. 327-333.
56. Kirsch, U., Reiss, M. and Shamir, U. (1972), “Optimum Design by Partitioning into Substructures”, Journal of Structural Division, No. St1, pp. 249-267.
57. Krishnamoorthy, C. S., Prasanna Venkatesh, P., Sudarshan, R. (2002), “Object-oriented Framework for Genetic Algorithms with Application to Space Truss Optimization”, J. of Computing in Civil Engineering, Vol. 16(1), pp. 66-75.
58. Lassen, T. (1993), “Optimum Design of Three-dimensional Framework Structures”, Journal of Structural Engineering, Vol. 119, No. 3, pp. 713-727.
59. Li, G., Zhou, R.-G., Duan, L. and Chen, W.-F. (1999), “Multiobjective and Multilevel Optimization for Steel Frames”, Engineering Structures, Vol. 21, pp. 519-529.
60. Majid, K. I. and Elliott, D. W. (1971), “Optimum Design of Frames with Deflection Constraints by Non-linear Programming”, Structural Engineer, Vol. 49,No. 4, pp. 179-188.
61. May, S. A. and Balling, R. J. (1992), “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks”, Structural Optimization, No. 4, pp. 142-146.
62. Palmer, A. C. (1968), “Optimal Structure Design by Dynamic Programming”, Journal of Structural Division, ASCE, Vol. 94, No. ST8, pp. 1887-1906.
63. Pezeshk, S. (1998), “Design of Framed Structures : An Integrated Non-linear Analysis and Optimal Minimum Weight Design”, International Journal for Numerical Methods in Engineering, Vol. 41, pp. 459-471.
64. Pezeshk, S., Camp, C. V. and Chen, D. (2000), “Design of Nonlinear Framed Structures Using Genetic Optimization”, Journal of Structural Engineering ,Vol. 126, No. 3.
65. Saka, M. P. (1991), “Optimum Design of Steel Frames with Stability Constraints”, Computers and Structures, Vol. 41, No. 6, pp. 1365-1377.
66. Saka, M. P. (1998), “Optimum Design of Grillage Systems Using Genetic Algorithms”, Computer-Aided Civil and Infrastructure Engineering, Vol. 13, No. 4, pp. 297-302.
67. Saka, M. P. (2003), “Optimum Design of Skeletal Structures: A Review, Chapter 10”, Progress in Civil and Structural Engineering Computing, edited by B.H.V. Topping, Saxe-Colburg Publications, Stirling, Scorland.
68. Saka, M. P. and Hayalioglu, M. S. (1991), “Optimum Design of Geometrically Nonlinear Elastic-Plastic Steel Frames”, Computers and Structures, Vol. 38, No. 3, pp. 329-344.
69. Saka, M. P. and Kameshki, E. S. (1998), “Optimum Design of Unbraced Rigid Frames”, Computers and Structures, Vol. 69, No. 4, pp. 433-442.
70. Salajegheh, E. (1996), “Approximate Discrete Variable Optimization of Frame Structures with Dual Methods”, International Journal for Numerical Methods in Engineering, Vol. 39, pp. 1607-1617.
71. Salajegheh, E. (1997), “Structural Optimization Using Response Approximation and Optimality Criteria Methods”, Engineering Structures, Vol. 19, No. 7, pp. 527-532.
72. Schutte, J. F. and Groenwold, A. A. (2003), “Sizing Design of Truss Structures Using Particle Swarms”, Struct. Multidisc. Optim., Vol.25(2), pp.261-269.
73. Simoes, L. M. (1996), “Optimization of Frames with Semi-rigid Connections”, Computers and Structures, Vol. 60, No. 4, pp. 531-539.
74. Soegiarso, R. and Adeli, H. (1997), “Optimum Load and Resistance Factor Design of Steel Space-frames Structures”, Journal of Structural Engineering, Vol. 123, No. 2, pp.184-192.
75. Takewaki, I., Conte, J. P., Mahin, S. A. and Pister, K. S. (1991), “Probabilistic Multiobjective Optimal Design of Sesmic Resistance Braced Steel Frames Using ARMA Models”, Computers and Structures, Vol. 41, No. 4, pp. 687-707.
76. Torregosa, R. F., and Kanok-Nukulchai, W. (2002), “Weight Optimization of Steel Frames Using Genetic Algorithm”, Advances in Structural Engineering, Vol. 5, No. 2, pp. 99-110.
77. Vanderplaats, G. N., and Salajegheh, E. (1989), “New Approximation Method for Stress Constraints in Structural Synthesis”, AIAA Journal, Vol. 27, No. 3, pp. 352-358.
78. Vanderplaats, G. N., and Salajegheh, E. (1993), “Efficient Optimum Design of Structures with Discrete Design Variables”, Space Structures, Vol. 8, No. 3, pp. 199-208.
79. Vanderplaats, G. N., and Sugimoto, H. (1986), “A General-purpose Optimization Program for Engineering Design”, Computers and Structures, Vol. 24, No. 1, pp. 13-21.
80. Wah, B. W. and Shang, Y. (1996), A Discrete Lagrangian-Based Global-Search Metod for Solving Satisfiability Problems, Proc. DIMACS Workshop on Satisfiability Problems, Theory and Applications, Du, D.Z., Gu, J., and Pardalos, P., AMS.
81. Wu, Z. (1998), “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems”, Master Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.
82. Xu, L. and Grierson, D. E. (1993), “Computer-automated Design of Semi-rigid Steel Frameworks”, Journal of Structural Engineering, Vol. 119, No. 6, pp. 1740-1760.
83. Yeh, I. C. (1999), “Hybrid Genetic Algorithms for Optimization of Truss Structures”, Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 199-206.
84. Yunkiang, D. (1989), “Multilevel Optimization of Frames with Beams Including Bucking Constraints”, Computers and Structures, Vol. 32, No. 2, pp. 249-261.
85. 吳泳達 (2003),「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
86. 張慰慈 (2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
87. 莊德興、張慰慈 (2003),「連續局部搜尋遺傳演算法在結構離散最佳化設計之應用」,中華民國第二十七屆全國力學會議,成功大學,台南市。
88. 莊德興、張慰慈 (2005),「離散拉格朗日法於大型桁架輕量化設計之加速搜尋策略」,中國土木水利工程學刊,Vol.17(1),pp. 143-151。
指導教授 莊德興(Der-Shin Juang) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明