參考文獻 |
1. Al-Salloum, Y. and Siddiqi, H. (1993), “Optimum Design of Frames Under Alternate Loading Condition”, Canadian Journal of Civil Engineering, Vol. 20, No. 5, pp. 778-786.
2. American Institute of Steel Construction. (1994), Manual of Steel Construction : Load and Resistance Factor Design, 2d ed. Chicago.
3. Arora, J. S. (2002), “Methods for Discrete Variable Structural Optimization,” In S.A. Burns (ed.), Recent Advances in Optimal Structural Design, ASCE, pp. 1-40.
4. Arora, J. S. and Govil, A. K. (1977), “An Efficient Method for Optimal Structural Design by Substructures”, Computers and Structures, Vol. 7, pp. 507-515.
5. Arora, J. S. and Huang, M. W. (1996), “Discrete Structural Optimization with Commercially Available Sections”, Structural Engineering / Earthquake Engineering, Vol. 13, No. 2, pp. 105-122.
6. Arora, J. S. and Huang, E. J. and Rim, K. (1975), “Optimal Design of Plane Frames”, Journal of Structural Division, ASCE, Vol. 101, No.10, pp. 2063-2078.
7. Balling, R. J. (1991), “Optimal Steel Frame Design by Simulated Annealing”, Journal of Structural Engineering, Vol. 117, No. 6, pp. 1780-1795.
8. Bigelow, R. H. and Gaylord, E. H. (1967), “Design of Steel Frames for Minimum Weight”, Journal of Structural Division, ASCE, Vol. 93, No. St6, pp. 109-131.
9. Blum, C. (2003), “Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison”, ACM Computing Surveys, Vol. 35(3), pp. 268-308.
10. Brown, D. M. and Ang, A. H. (1966), “Structural Optimization by Non-linear Programming”, Journal of Structural Division, ASCE, Vol. 92, No. ST6, pp. 319-340.
11. Burns, S.A. (2002), Recent Advances in Optimal Structural Design, ASCE.
12. Calafell, D. O. and Willmert, K. D. (1977), “Automated Resizing Optimization of Generally Loaded Frames via Linear Programming Techniques”, Proceedings of the symposium on application of computer methods in engineering , University of Southern California, Los Angeles.
13. Cameron, G. E., Xu, L. and Grierson, D. E. (1991), “Discrete Optimal Design of 3D Frameworks”, ASCE Structural Congress-10th Electronic Computation Conference, pp. 181-188, Indianapolis, Indiana.
14. Cammaert, A. B. (1971), “The Optimal Design of Multi-storey Frames Using Mathematical Programming”, Ph.D. thesis, University of Cambridge, Queens College, Cambridge, UK.
15. Camp, C. V. and Bichon, B. J. (2004), “Design of Space Trusses Using Ant Colony Optimization”, Journal of Structural Engineering, Vol. 130, No. 5, pp. 741-751.
16. Camp, C., Pezeshk, S. and Cao, G. (1998), “Optimized Design of Two-dimensional Structures Using a Genetic Algorithm”, Journal of Structural Engineering, Vol. 124, No. 5, pp. 551-559.
17. Chan, C.-M. (1992), “An Optimality Criteria Algorithm for Tall Steel Building Design Using Commercial Standard Sections”, Structural Optimization, Vol. 5, pp. 26-29.
18. Chan, C.-M., Grierson, D. E. and Sherbourne, A. N. (1995), “Automatic Optimal Design of Tall Steel Building Frameworks”, Journal of Structural Engineering, Vol. 121,No. 5, pp. 838-847.
19. Chan, C.-M., Sherbourne, A. N. and Grierson, D. E. (1994), “Stiffness Optimization Technique for 3D Tall Steel Building Frameworks Under Multiple Lateral Loadings”, Engineer Structures, Vol. 16, No. 8, pp. 570-576.
20. Chen, S. Y. (1997), “Using Genetic Algorithms for the Optimal Design of Structural Systems,” PhD. Dissertation, Arizona State University.
21. Chen, S-Y. and Rajan, S. D. (1999), “Using Genetic Algorithm as an Automatic Structural Design Tool”, Short Paper Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Vol. 1, 263-265, Buffalo, NY.
22. Cheng, F. Y. and Botkin, M. E. (1976), “Nonlinear Optimum Design of Dynamic Damped Frames”, J. Struct. Div., ASCE, Vol. 102, pp. 609–628.
23. Cheng, F. Y. and Juang, D. S. (1988), “Assessment of Various Code Provisions Based on Optimum Design of Steel Structures”, Earthquake Engineering and Structural Dynamics, Vol. 16, No. 1, pp. 52-57.
24. Cheng, F. Y. and Juang, D. S. (1989), “Recursive Optimization for Seismic Steel Frames”, Journal of Structural Engineering, Vol. 115, No. 2, pp. 445-466.
25. Charles, V. C., Barron, J. B. and Scott, P. S. (2005), “Design of Steel Frames Using Ant Colony Optimization”, Journal of Structural Engineering, Vol. 131, No.3, March 1.
26. Cornell, C. A. (1966), “Examples of Optimization in Structural Design”, Report R65-26, University of Waterloo, Canada.
27. Ding, Y. and Esping, D. J. (1986), “Optimum Design of Beams with Different Cross Sectional Shapes”, Computers and Structures, Vol. 24, pp. 707-726.
28. Fogel, L. J. (1999), Intelligence Through Simulated Evolution (Forty years of evolutionary programming), Wiley Series on Intelligent Systems.
29. Foley, C. M. and Schinler, D. (2003), “Automated Design of Steel Frames Using Advanced Analysis and Object-Oriented Evolutionary Computation”, Journal of Structural Engineering, Vol. 129, No. 5.
30. Frbatur, R. and Al-Hussainy, M. M. (1992), “Optimum Design of Frames”, Computers and Structures, Vol. 45, No. 5-6, pp. 887-891.
31. Grierson, D. E. (1996), “Automated Conceptual Design of Structural System”, In: Topping, B. H. V. (ed.), Advances in Computational Structures, pp. 157-162, Civil-Comp Press, Edinburgh.
32. Grierson D. E. and Chan, C. M. (1993), “Optimality Criteria Design Method for Tall Steel Buildings”, Advances in Engineering Software, Vol. 16, no. 2, pp. 119-125.
33. Grierson, D. E. and Lee, W. H. (1984), “Optimal Synthesis of Steel Frameworks Using Standard Sections”, Journal of Structural Mecbanics, Vol. 12, No. 3, pp. 335-370.
34. Grierson, D. E. and Lee, W. H. (1986), “Optimal Synthesis of Frameworks Under Elastic and Plastic Performance Constraints Using Discrete Sections”, Journal of Structural Mecbanics, Vol. 14, No. 4, pp. 401-420.
35. Grierson, D. E. and Pak, W. H. (1993), “Discrete Optimal Design Using a Genetic Algorithm”, In: Bendnsoe, M.P. and Mota Soares, C.A. (eds.), Topology Design of Structures, pp. 89-102, Kluwer Acadimica Publishers, The Netherlands.
36. Gulay, G. and Boduroglu, H. (1989), “An Algorithm for the Optimum Design of Braced and Unbraced Steel Frames Under Earthquake Loading”, Earthquake Engineering and Structural Dynamics, Vol. 18, pp. 121-128.
37. Hager, K. and Balling, R. J. (1988), “New Approach for Discrete Structural Optimization”, Journal of Structural Engineering, Vol. 114, No. 5, pp. 1120-1134.
38. Hajela, P. (1989), “Genetic Search – an Approach to the Nonconvex Optimization Problem”, Proceeding of the 30th conference AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials, Mobile, Atlanta, pp. 165-175, AIAA, Reston.
39. Hajela, P. (1990), “Genetic Search – an Approach to the Nonconvex Optimization Problem”, AIAA Journal, Vol. 28, No. 7, pp. 1205-1210.
40. Hajela, P. and Lin, C. Y. (1992a), “Genetic Search Strategies in Multicriterion Optimal Design”, Structural Optimization, Vol. 4, pp. 99-107.
41. Hajela, P. and Lin, C. Y. (1992b), “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables”, Engineering Optimization, Vol. 19, pp. 309-327.
42. Hall, S. K., Cameron, G. E., and Grierson, D. E. (1989), “Least-Weight Design of Steel Frameworks accounting for P-Δ effects”, Journal of Structural Engineering, Vol. 115, pp. 1463-1475.
43. Hayalioglu, M. S. (2001), “Optimum Load and Resistance Factor Design of Steel Space Frames Using Genetic Algorithm”, Structural and Multidisciplinary Optimization , Vol. 21, pp. 292-299.
44. Hayalioglu, M. S. and Saka, M. P. (1992), “Optimum Design of Geometrically Nonlinear Elastic-plastic Steel Frames with Tapered Members”, Computers and Structures, Vol. 44, No. 4, pp. 915-924.
45. Hernandez, S. (1998), “Optimum Design of Steel Structures”, Journal of Construction Steel Research, Vol. 46, No. 1-3, pp. 374-378.
46. Huang, M. W. (1995), “Algorithms for Mixed Continuous-Discrete Variable Problems in Structural Optimization”, Ph.D Dissertation, Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, U.S.A.
47. Huang, M. W. and Arora, J. S. (1997), “Optimal Design with Discrete Variables : Some Numerical Experiments”, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 165-188.
48. Jenkins, W. M. (1997), “On the Application of Natural Algorithms to Structural Design Optimization”, Engineering Structures, Vol. 19, No. 4, pp. 302-308.
49. Juang, D. S., Wu, Y. T., and Chang, W. T. (2003), “Optimum Design of Truss Structures Using Discrete Lagrangian Method”, Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, pp. 755-766.
50. Juang, D. S. and Yao, H. H. (1987), “Optimum Design of Flexibly Connected Steel Frames”, Proceedings of the 11th Conference on Theoretical and Applied Mechanics, Vol. 2, pp. 1207-1216, Chung-li, Taiwan.
51. Kamal, C. S. and Hojjat, A. (2000), “Fuzzy Genetic Algorithm for Optimization of Steel Structures”, Journal of Structural Engineering, Vol. 126, No. 5.
52. Karihaloo, B. L. and Kanagasundram S. (1989), “Minimum Weight Design of Structural Frames”, Computers and Structures, Vol. 31, No. 5, pp. 647-655.
53. Khan, M. R., Willmert, K. D. and Thornton, W. A. (1979), “An Optimality Criterion Method for Large Scale Structures”, AIAA Journal, Vol. 17, pp. 753-761.
54. Kim, S-E., Choi, S.-H., Kim, C.-S. and Ma, S.-S. (2004), ”Automatic Design of Space Steel Frames Using Practical Nonlinear Analysis”, Thin-Walled Structures, Vol. 42, pp. 1273-1291.
55. Kincaid, R. K. and Padula, S. L. (1990), “Minimising Distortion and Internal Forces in Truss Structures by Simulated Annealing”, Proceeding of the AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., Part 1, pp. 327-333.
56. Kirsch, U., Reiss, M. and Shamir, U. (1972), “Optimum Design by Partitioning into Substructures”, Journal of Structural Division, No. St1, pp. 249-267.
57. Krishnamoorthy, C. S., Prasanna Venkatesh, P., Sudarshan, R. (2002), “Object-oriented Framework for Genetic Algorithms with Application to Space Truss Optimization”, J. of Computing in Civil Engineering, Vol. 16(1), pp. 66-75.
58. Lassen, T. (1993), “Optimum Design of Three-dimensional Framework Structures”, Journal of Structural Engineering, Vol. 119, No. 3, pp. 713-727.
59. Li, G., Zhou, R.-G., Duan, L. and Chen, W.-F. (1999), “Multiobjective and Multilevel Optimization for Steel Frames”, Engineering Structures, Vol. 21, pp. 519-529.
60. Majid, K. I. and Elliott, D. W. (1971), “Optimum Design of Frames with Deflection Constraints by Non-linear Programming”, Structural Engineer, Vol. 49,No. 4, pp. 179-188.
61. May, S. A. and Balling, R. J. (1992), “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks”, Structural Optimization, No. 4, pp. 142-146.
62. Palmer, A. C. (1968), “Optimal Structure Design by Dynamic Programming”, Journal of Structural Division, ASCE, Vol. 94, No. ST8, pp. 1887-1906.
63. Pezeshk, S. (1998), “Design of Framed Structures : An Integrated Non-linear Analysis and Optimal Minimum Weight Design”, International Journal for Numerical Methods in Engineering, Vol. 41, pp. 459-471.
64. Pezeshk, S., Camp, C. V. and Chen, D. (2000), “Design of Nonlinear Framed Structures Using Genetic Optimization”, Journal of Structural Engineering ,Vol. 126, No. 3.
65. Saka, M. P. (1991), “Optimum Design of Steel Frames with Stability Constraints”, Computers and Structures, Vol. 41, No. 6, pp. 1365-1377.
66. Saka, M. P. (1998), “Optimum Design of Grillage Systems Using Genetic Algorithms”, Computer-Aided Civil and Infrastructure Engineering, Vol. 13, No. 4, pp. 297-302.
67. Saka, M. P. (2003), “Optimum Design of Skeletal Structures: A Review, Chapter 10”, Progress in Civil and Structural Engineering Computing, edited by B.H.V. Topping, Saxe-Colburg Publications, Stirling, Scorland.
68. Saka, M. P. and Hayalioglu, M. S. (1991), “Optimum Design of Geometrically Nonlinear Elastic-Plastic Steel Frames”, Computers and Structures, Vol. 38, No. 3, pp. 329-344.
69. Saka, M. P. and Kameshki, E. S. (1998), “Optimum Design of Unbraced Rigid Frames”, Computers and Structures, Vol. 69, No. 4, pp. 433-442.
70. Salajegheh, E. (1996), “Approximate Discrete Variable Optimization of Frame Structures with Dual Methods”, International Journal for Numerical Methods in Engineering, Vol. 39, pp. 1607-1617.
71. Salajegheh, E. (1997), “Structural Optimization Using Response Approximation and Optimality Criteria Methods”, Engineering Structures, Vol. 19, No. 7, pp. 527-532.
72. Schutte, J. F. and Groenwold, A. A. (2003), “Sizing Design of Truss Structures Using Particle Swarms”, Struct. Multidisc. Optim., Vol.25(2), pp.261-269.
73. Simoes, L. M. (1996), “Optimization of Frames with Semi-rigid Connections”, Computers and Structures, Vol. 60, No. 4, pp. 531-539.
74. Soegiarso, R. and Adeli, H. (1997), “Optimum Load and Resistance Factor Design of Steel Space-frames Structures”, Journal of Structural Engineering, Vol. 123, No. 2, pp.184-192.
75. Takewaki, I., Conte, J. P., Mahin, S. A. and Pister, K. S. (1991), “Probabilistic Multiobjective Optimal Design of Sesmic Resistance Braced Steel Frames Using ARMA Models”, Computers and Structures, Vol. 41, No. 4, pp. 687-707.
76. Torregosa, R. F., and Kanok-Nukulchai, W. (2002), “Weight Optimization of Steel Frames Using Genetic Algorithm”, Advances in Structural Engineering, Vol. 5, No. 2, pp. 99-110.
77. Vanderplaats, G. N., and Salajegheh, E. (1989), “New Approximation Method for Stress Constraints in Structural Synthesis”, AIAA Journal, Vol. 27, No. 3, pp. 352-358.
78. Vanderplaats, G. N., and Salajegheh, E. (1993), “Efficient Optimum Design of Structures with Discrete Design Variables”, Space Structures, Vol. 8, No. 3, pp. 199-208.
79. Vanderplaats, G. N., and Sugimoto, H. (1986), “A General-purpose Optimization Program for Engineering Design”, Computers and Structures, Vol. 24, No. 1, pp. 13-21.
80. Wah, B. W. and Shang, Y. (1996), A Discrete Lagrangian-Based Global-Search Metod for Solving Satisfiability Problems, Proc. DIMACS Workshop on Satisfiability Problems, Theory and Applications, Du, D.Z., Gu, J., and Pardalos, P., AMS.
81. Wu, Z. (1998), “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems”, Master Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.
82. Xu, L. and Grierson, D. E. (1993), “Computer-automated Design of Semi-rigid Steel Frameworks”, Journal of Structural Engineering, Vol. 119, No. 6, pp. 1740-1760.
83. Yeh, I. C. (1999), “Hybrid Genetic Algorithms for Optimization of Truss Structures”, Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 199-206.
84. Yunkiang, D. (1989), “Multilevel Optimization of Frames with Beams Including Bucking Constraints”, Computers and Structures, Vol. 32, No. 2, pp. 249-261.
85. 吳泳達 (2003),「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
86. 張慰慈 (2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
87. 莊德興、張慰慈 (2003),「連續局部搜尋遺傳演算法在結構離散最佳化設計之應用」,中華民國第二十七屆全國力學會議,成功大學,台南市。
88. 莊德興、張慰慈 (2005),「離散拉格朗日法於大型桁架輕量化設計之加速搜尋策略」,中國土木水利工程學刊,Vol.17(1),pp. 143-151。 |