博碩士論文 93521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.225.195.4
姓名 張運添(Yun-Tien Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改善歸屬函數之模糊PID控制器
(Membership-Functions-Modified Fuzzy-PID Controllers)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是結合模糊理論、基因演算法及PID控制之觀念與優點有效率地設計出好的控制系統,研究如何應用基因演算法來設計一個本身具有權重調諧的模糊控制器,並與PID控制器結合應用。
我們所提出的主要的方法是藉著修改模糊邏輯控制器之三角形的歸屬函數值來達到權重調整的目的,模糊控制器內部調整權重後的輸出並與結合比例、積分與微分控制器來控制受控體,其作用主要是加快系統的響應時間。整個控制器能在受控系統的參數與特性所知有限下做穩定的控制,同時有效地改善上升時間及安定時間,更降低了最大超越量,使控制效能達到預期。
修改三角形歸屬函數後之模糊邏輯控制器並與傳統之模糊邏輯控制器做一性能比較,如上升時間,最大超越量,和積分誤差等,以實現該控制器之效能。最後列舉一些數學例子以及一個實際系統之三相感應馬達的例子經由電腦模擬的結果與數據證明,在性能上已經可以達到滿意的控制結果,顯現出我們所提出之方法的優點。
本控制器參數皆是利用基因演算法自動搜尋所得,並依性能指標的高低來調整控制器的參數。本論文所使用之演算法在實驗中展現其優點有如下四點:
(1)有系統的搜尋最佳解。
(2)比傳統嘗試錯誤法節省大量搜尋時間跟精力。
(3)不需有關受控系統之專業知識及經驗。
(4)系統性能規格可由設計適當之適合函數(Fitness Function)而得。
摘要(英) This thesis investigates the technique of the modifications of triangular membership functions for performance improvement of fuzzy systems by
means of genetic algorithms.
First, we propose a simple method to modify the traditional triangular membership functions. It can to tune the membership function of error by
modify method. Then, output of the fuzzy controller is transmitted into a PID controller to control plant. The controllers can stabilize a process with a minimal amount of prior knowledge and improve rise time, settling time and maximum overshoot effectively. Some illustrative examples demonstrate that satisfactory performance is achieved. Simulation results show that a better
performance is obtained, when modified membership functions are utilized.
By means of genetic algorithms, the parameters of the aforementioned controllers are determined to have a better performance. These experiment results show technique’s power and its advantages:
1. Systematic search.
2. This technique can save much more time and effort than that of
conventional trial-and-error design method.
3. This technique does not need extra professional knowledge or mathematical analysis about system dynamics.
4. The performance specifications can be achieved by means of designing a proper fitness function.
關鍵字(中) ★ 模糊控制器
★ 比例積分微分控制器
★ 歸屬函數
★ 性能改善
★ 基因演算法
關鍵字(英) ★ performance improvement
★ membership functions
★ fuzzy controller
★ PID controller
★ genetic algorithms
論文目次 摘要----------------------------------------------------------------Ⅰ
致謝辭--------------------------------------------------------------Ⅱ
中文目錄------------------------------------------------------------Ⅲ
表目錄--------------------------------------------------------------Ⅳ
第一章 緒論----------------------------------------------------------1
1.1 研究動機與目的---------------------------------------------------1
1.2 文獻回顧---------------------------------------------------------4
1.3 論文架構---------------------------------------------------------6
第二章 Ziegler-Nichols PID 控制器------------------------------------7
第三章 基因演算法----------------------------------------------------9
第四章 改善歸屬函數之模糊PID 控制器---------------------------------10
第五章 結論及建議---------------------------------------------------13
Abstract ---------------------------------------------------------- Ⅰ
Content ----------------------------------------------------------- Ⅱ
List of Figures---------------------------------------------------- Ⅳ
List of Tables ---------------------------------------------------- Ⅵ
Chapter 1 Introduction ----------------------------------------------1
1.1 Research Motivations and the Goal--------------------------------1
1.2 Papers Review----------------------------------------------------3
1.3 Thesis Overview--------------------------------------------------4
Chapter 2 The Ziegler-Nichols PID Controller ------------------------5
2.1 Introduction ----------------------------------------------------5
2.2 Ziegler-Nichols Rules for Tuning PID Controller -----------------6
2.3 An Illustrated Example ------------------------------------------8
Chapter 3 Genetic Algorithms -------------------------------------- 13
3.1 Introduction -------------------------------------------------- 13
3.2 The Basic Construction of GA’s-------------------------------- 14
3.3 Elite Method -------------------------------------------------- 16
3.4 Reinforced Search Method--------------------------------------- 17
Chapter 4 Membership-Functions-Modified Fuzzy-PID Controllers
------------------------------------------------------------------- 19
4.1 Introduction -------------------------------------------------- 20
4.2 Fuzzy-PID Controllers------------------------------------------ 24
4.2.1 Simulation Results ------------------------------------------ 27
4.3 Weighted Fuzzy-PID Controllers -------------------------------- 31
4.4 Membership-Functions-Modified Fuzzy-PID Controllers------------ 35
Chapter 5 Simulation Results--------------------------------------- 40
5.1 Introduction -------------------------------------------------- 40
5.2 Three simulation examples for numerical illustration----------- 41
5.3 Simulation an example for a three-phase induction motor ------- 53
5.4 Discussion----------------------------------------------------- 58
Chapter 6 Conclusions and Suggestions ----------------------------- 59
6.1 Conclusions --------------------------------------------------- 59
6.2 Suggestions --------------------------------------------------- 60
References -------------------------------------------------------- 61
Publications ------------------------------------------------------ 66
參考文獻 [1] L. A. Zadeh, “Fuzzy set,” Informat. Control, vol. 8. pp. 338-353, 1965.
[2] L. A. Zadeh, “Fuzzy algorithm,” Informat. Control, vol. 12. pp. 94-120,1968.
[3] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int, J. Mach. Stud. ,vol. 7, No. 1, pp. 1-13, 1975.
[4] D. A. Rutherford and G. A. Carter, “An heruristic adaptive controller for a sinter plant,” Proc. 2nd IFAC Symp. Automation in Mining, Mineral and Metal Processing, Johannesburg, pp. 315-324, 1976.
[5] Chuen Chien Lee, “Fuzzy Logic in Control System: Fuzzy Logic Controller, Part I,” IEEE Trans. On System. Man. And Cybernetics, vol. 20, No. 2, pp. 404-418, 1990.
[6] Chuen Chien Lee, “Fuzzy logic in Control System: Fuzzy Logic Controller, Part II,” IEEE Trans. On System. Man. And Cybernetics, vol. 20, No. 2, pp. 404-418, 1990.
[7] Z. Y. Zhao, M. Tomizuka, and S. Isaka, “Fuzzy Gain Scheduling of PID Controllers,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 23, No. 5, pp. 1392-1398, 1993.
[8] Visioli, A. , “Fuzzy logic based set-point weight tuning of PID controllers,” IEEE Trans. on Systems, Man, and Cybernetics, Pt. A, vol. 29, No. 6, pp. 587-592, 1999.
[9] Visioli, A. , “Tuning of PID controllers with fuzzy logic,” IEE Proc. Control Theory Appl., vol. 148, No. 1, pp. 1-8, 2001.
[10] K. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. New York: ISA, 1995.
[11] J. G. Ziegler and N. B. Nichols, “Optimum setting for automatic controllers,” ASME Trans. pp. 759-748, 1942.
[12] S. G. Tzafestas, “Fuzzy systems and fuzzy expert control: an overview,”Knowl. Eng. Rev, Vol. 9, No. 3 pp.229-268, 1994.
[13] J. J. Zhao, “Design of Optimal Fuzzy Controllers Based on Genetic Algorithms,” Master Thesis, NCU, 1996.
[14] Yi-Sheng Zhou and Lin-Ying Lai, “Optimal design for Fuzzy controllers by Genetic Algorithms,” IEEE Trans. On Industry Applications, Vol. 36, No. 1 pp. 93-97, 2000.
[15] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,” IEEE Transaction on Systems, Man, and Cybernetics Part c, 28 (37) (1998) 338-355.
[16] Y. M. Park, U. C. Moon and K. Y. Lee, “A self-organizing fuzzy logic controller for dynamic systems using a fuzzy auto-regressive moving average (FARMA) model,” IEEE Transaction on Fuzzy Systems, 3 (1) (1995) 75-82.
[17] C. H. Jung, C. S. ham and K. I. Lee, “A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP,” Fuzzy Sets and Systems, 74 (1995) 53-60.
[18] H. X. Li and H. B. Gatland, “Conventional Fuzzy Control and its enhancement,” IEEE Transaction on Systems Man, and Cybernetics, Part B, 28 (5) (1996) 791-780.
[19] Y. Q. Zhang and A. Kandel, “Primary-fuzzy-sets -based normal fuzzy reasoning methodology and its applications,” International Journal of Intelligent systems, 3 (1998) 375-401.
[20] X.T. Peng and S.M. Liu, “Self-regulating PID controllers and its applications to a temperature controlling process,” Fuzzy Computing, (1988) 355-363.
[21] J.Y. Chen and C.C. Kung, “A modified fuzzy controller,” Proceeding of the 15th National Symposium on Automatic Control, (1992) 352-357. (R.O.C).
[22] M. Maeda and S. Murakami, “A self-tuning fuzzy controller,” Fuzzy Sets and Systems, 51 (1992) 29-40.
[23] Z.Q. Wu, P.Z. Wang and T.H. Heng, “A rule self-regulating fuzzy controller,” Fuzzy Sets and Systems, 47 (1992) 13-21.
[24] S.Z. He, S. Tan and C.C Hang and P.Z. Wang, “Control of dynamical processes using an on-line rule-adaptive fuzzy control system,” Fuzzy Sets and Systems, 54 (1993) 11-22.
[25] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, (1991).
[26] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, (1989).
[27] J.J. Grefenstette, “ptimization of control parameters for genetic algorithms,” IEEE Transaction on Systems Man, and Cybernetics, 16 (1) (1986) 122-128.
[28] K. Krishnkumr and D.E. Goldberg, “Control system optimization using genetic algorithms,” Journal of Guidance, Control, and Dynamics, 15 (3) (1992) 735-740.
[29] C. Perneel, J. M. Themlin, J. M. Renders and M. Acheroy, “Optimization of fuzzy expert systems using genetic algorithms and neural networks,” IEEE Transaction on Fuzzy Systems, 3(3) (1995) 300-312.
[30] P. P. Bonissone, P. S. Khedkar and Y. Chen, “Genetic algorithms for automated tuning of fuzzy controllers: a transportation application,” IEEE International Conference on Fuzzy Systems (1996) 674-680.
[31] X.M. Qi and T.C. Chin, “Genetic algorithms based fuzzy controller for high order systems,” Fuzzy Sets and Systems 91 (1997) 279-284.
[32] H. J. Cho, K. B. Cho, B. H. Wong, “Fuzzy-PID hybrid control: Automatic rule generation using genetic algorithms,” Fuzzy Sets and Systems, 92 (1997) 305-316.
[33] Katsuhiko Ogata, Modern Control Engineering, Prentice-Hall Fourth Edition, 2002.
[34] C. C. Wong and C. C. Chen, “Switching Grey Prediction PID Controller Design,” The Journal of Grey System, vol. 4, pp. 323-333, 1997.
[35] Zhi-Wei Woo, Hung-Yuan Chung, Jin-Jye Lin, “A PID type fuzzy controller with self-tuning scaling factors,” Fuzzy Sets and Systems, 115 (2000) 321-326.
[36] J. H. Holland, “Outline for a logical theory of adaptive system,” J. ACM, vol. 3, pp. 297-314, 1962.
[37] K. A. DeJong, “An analysis of the behavior of a class of genetic adaptive system,” Ph.D. dissertation (CCS), Univ. Mech., Ann Arbor, 1975.
[38] J. Mitzpatrick, J. J. Grefenstette, and D. Van Gucht, “Image registration by genetic search,” in Proc. IEEE southeastcon’84, pp. 460-464, 1984.
[39] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithm for the traveling salesman problem,” in Proc. Int. Conf. Genetic Algorithms and their Applications, pp. 160-165, 1985.
[40] K. Kristinsson and G. A. Dumont, “Genetic algorithms in system identification,” Third IEEE Int. symp. Intelligent contr., Arlington, VA, pp. 597-602, 1988.
[41] L. Davis, Ed. Genetic Algorithms and Simulated Annealing. London: Pitman, 1987.
[42] J. J. Grefenstette, Ed., Pro. Int. Conf. Genetic Algorithm and their applications. Hillsdale, NJ: Lawrene Erlbaum Associates, 1985.
[43] C. S. Chao, T. Z. Wu and Y. T. Juang, “Weighted Fuzzy-PID controllers,” Proceeding of 2004 Automatic Control Conference, Chung-Li, Taiwan, 2004.
[44] Yun-Tien, Chang and Yau-Tarng, Juang, “Modification of Membership Functions for Performance Improvement,” Proceeding of 2005 the 13th National Conference on Fuzzy Theory and Its Applications, September 30-October 1, Kaohsiung, Taiwan, 2005.
[45] Yun-Tien, Chang and Yau-Tarng, Juang, “Combination of Membership-Functions-Modified Fuzzy Controller with PID Controller for Performance Improvement,” Proceedings of 2005 CACS Automatic Control Conference, Nov 18-19, Tainan, Taiwan, 2005.
[46] Benjamin C. Kuo, “Automatic Control System,” Seven Editions, 1995.
[47] G. M. Liaw and F. J. Lin, “A robust controller for induction motor drives”, IEEE Transactions on Industrial Electronics, vol. 41, pp. 308-315, 1994.
[48] S. Sujitjorn, D. Puangdownreong, and Y. Prempeaneerat, “Real-time fuzzy PID-controller for Motor Speed Regulation,” Proc. IASTED(MIC2000),Innsbruck, Austria, pp.76-81, 2000.
[49] D. Puangdownreong, T. Kulworawanichpong, and S. Sujitjorn, “Input weighting optimization for pid controllers based on the adaptive tabu search,” 2004 IEEE Region 10 Conference, Volume D, 21-24 pp. 451-454 Vol. 4, Nov. 2004.
[50] 劉智豪,“結合基因演算法與混合式模糊PID控制器之磁浮系統控制”,國立中山大學碩士論文,2003。
[51] 陳繹光,“適應性基因演算法與混合式模糊PID控制器於線性馬達之定位控制”,國立中山大學碩士論文,2003。
[52] 王文俊,“認識Fuzzy”,全華科技圖書股份有限公司出版,2001。
[53] 孫宗瀛 等,“Fuzzy 控制理論、實作與應用”,全華科技圖書有限公司出版,2001。
[54] 張伯維,“應用動態灰色預測之模糊PID 控制”,國立中央大學碩士論文,2003。
[55] 趙健雄,“Weighted Fuzzy-PID controllers”,國立中央大學碩士論文,2004。
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2006-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明