摘要(英) |
The purpose of this thesis is to design and control a self-balance two-wheel vehicle. NIOS CPU is the control center of the entire system, which includes fuzzy control algorithm, motor control, A/D converter, wireless communication and signal process etc. It is the whole applications of an embedded system and system on programmable chip (SOPC). In control, the sensors tilt and gyro are used to measure the inclination angle and the angular velocity of the vehicle. Furthermore, the encoder is used to measure rotational rate and rotational angle of motors of the vehicle. The real-time vehicle information is selected for the inputs of every motion’s fuzzy controller. Through evaluating outputs of controllers, we use FPGA to implement PWM signals control motors of the vehicle. Finally, the two-wheel vehicle achieves self-balance, position fixing, synchronization, going forward and backward, walking with pace, making a turn, climbing up, going downhill, stopping and so on motions. All signals could be transmitted via wireless modules. However, not only the whole information of vehicle can be revealed by PC, but also the vehicle can be controlled by remote controller in our result. |
參考文獻 |
[1] F. Grasser, A. D'Arrigo, S. Colombi and A.C. Rufer, “JOE: a mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, Vol.39, No. 1, pp. 107-114, Feb. 2002.
[2] Y. Ha and S. Yuta, “Trajectory Tracking Control for Navigation of Self-Contained Mobile Inverse Pendulum,” IEEE/RSJ/GI Int. Conf. On Advanced Robotic Systems and the Real World', vol. 3, pp. 12-16, September 1994.
[3] T. Miyashita and H. Ishiguro “Human-like natural behavior generation based on involuntary motions for humanoid robots,” Robotics and Autonomous System, Vol.48, pp. 203-212, 2004.
[4] J. Yi, N. Yubazaki and K. Hirota, “Upswing and Stabilization Control of Inverted Pendulum and Cart System by the SIRMs Dynamically Connected Fuzzy Inference Model,” IEEE International Fuzzy Systems Conference Proceedings, pp. 400-405, August 22-25, 1999.
[5] M. Sasaki, N. Yanagihara, O. Matsumoto and K. Komoriya, “Forward and Backward Motion Control of Personal Riding-type Wheeled Mobile Platform,” International Conference on Robotics & Automation, New Orieans, LA April 2004.
[6] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-3175. http://www.cs.unc.edu/~{welch, gb}
[7] Segway之網站http://www.twsegway.com.tw
[8] PMP之網站http://pcweb.mycom.co.jp/articles/2004/10/15/aist
[9] Gyrobot之網站http://www.barello.net/Robots/Gyrobot/
[10] nBot之網站http://geology.heroy.smu.edu/~dpa-www/robo/nbot/
[11] Self-balancing scooters之網站http://www.tlb.org/scooter.html
[12] 王文俊 編著, 認識Fuzzy, 全華科技圖書股份有限公司, 2003年.
[13] 蕭如宣 編著, SOPC 系統設計, 儒林圖書公司, 2003年.
[14] 陳慶逸, 林柏辰 編著, VHDL 數位電路實習與專題設計, 文魁資訊股份有限公司, 2003年.
[15] 洪維恩 著, C++教學手冊, 博碩文化股份有限公司, 2003年.
[16] 辰白 編譯, DC伺服馬達應用電路技術, 建興出版社, 2000年.
[17] 陳連春 編譯, 電源電路設計要領, 建興出版社, 2001年.
[18] 蔡僑倫(王文俊教授指導), “DSP主控之兩輪機器人平衡與兩輪同步控制,” 國立中央大學電機工程研究所碩士論文, 2004年六月.
[19] 王培霖(王文俊教授指導), “DSP主控之兩輪機器人行動控制,” 國立中央大學電機工程研究所碩士論文, 2004年六月.
[20] 白翼銘(王文俊教授指導), “改良式DSP主控之兩輪機器人行動控制,” 國立中央大學電機工程研究所碩士論文, 2005年六月.
[21] 陳家榮(王文俊教授指導), “改良式DSP主控之兩輪機器人基本控制,” 國立中央大學電機工程研究所碩士論文, 2005年六月. |