參考文獻 |
[1] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode
controller for a class of second-order underactuated systems,” IEE Proc. -
Control Theory App. , vol. 151, no. 6, pp. 683-690, 2004.
[2] G. Bartonlini, A. Pisano and E. Usai, “Second-order sliding-mode
control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783-1790,
2002.
[3] Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica,
vol. 18, no. 3, pp. 257-266, 1982.
[4] M.A. Karkoub and M. Zribi, “Modelling and energy based nonlinear control
of crane lifters,” IEE Proc.-Control Theory Application, vol. 149, no. 3,
pp. 209-216 , 2002.
[5] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling
control laws for an underactuated overhead crane system,” IEEE/ASME
Transaction on Mechatron, vol.8, no. 3, pp. 418-423, 2003.
[6] A. Giua, C. Seatzu and G. Usai, “Observer-controller design for
cranes via Lyapunov equivalence,” Automatica, vol. 35, no. 4, pp. 669-
678, 1999.
[7] G. Corriga, A. Giua and G. Usai, “An implicit gain-scheduling controller
for cranes,” IEEE Trans. Contr. Syst., vol. 6, no. 1, pp. 15-20, 1998.
[8] A. Piazzi and A. Visioli, “Optimal dynamic inversion based control
of an overhead crane,” IEE Proc-Control Theory Application, vol. 149, no.
5, pp. 405-411, 2002.
[9] J.J. Hamalinen, A. Marttinen, L. Baharova and J. Virkkunen, “Optimal path
planning for a trolley crane fast and smooth transfer of load,” IEE Proc.-
Control Theory Application, vol. 142, no. 1, pp. 51-57, 1995.
[10] B. d’Andrea and J. M. Coron, “Exponential stabilization of an overhead
crane with flexible cable via a back-stepping approach,” Automatica,
vol. 36, no. 4, pp. 587-593, 2000.
[11] X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane
based on partial feedback linearization,” Proceedings of the 2005 IEEE
International Conference on Control and Automations, pp. 1074–1078.
[12] H. H. Lee, “Modeling and control of three-dimensional overhead crane,”
ASME Transactions, Journal of Dynamic Systems, Measurement, and Control,
vol. 120, pp. 471–476, 1998.
[13] H.-H. Lee, “A new motion-planning scheme for overhead cranes with high-
speed hoisting,” ASME Transactions, Journal of Dynamic Systems,
Measurement, and Control, vol. 126, pp. 359–364, 2004.
[14] H. H. Lee, “Motion planning for three-dimensional overhead cranes with
high-speed load hoisting,” Int. J. Control, vol. 78, no. 12, pp. 875-
886, 2005.
[15] H. H. Lee, “A new design approach for the anti-swing trajectory control
of overhead cranes with high-speed hosting,” Int. J. Control, vol. 77,
no. 10, pp. 931-940, 2004.
[16] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction
and its compensation in precise, position controlled mechanisms,” IEEE
Trans. Industry Application, vol. 28, no. 6, pp. 1392-1398, 1992.
[17] R. M. Hischorn and G. Miller, “Control of Nonlinear system with
friction,” IEEE Trans. Contr. Tech., vol. 28, no. 6, pp. 588-595, 1992.
[18] M. Iwasaki, H. Takei and N. Matsui, “GMDH-Based modeling and feedforward
compensation for nonlinear fiction in table systems,” IEEE Transactions
on Industrial Electronics, vol. 50, no. 6, pp.1172-1178, 2003.
[19] T. Shen, K. Tamura and H. Kaminaga, “Robust nonlinear control of
parametric uncertain systems with unknown friction and its application to
pneumatic control value,” Journal of Dynamic System, Measurement, and
Control, vol. 122, no. 2, pp. 257-262, 2000.
[20] T. Matsuo, R. Yoshino, H. Suemitsu, and K. Nakano, “Nominal performance
recovery by PID+Q controller and its application to antisway control of
crane lifter with visual feedback,” IEEE Tran. Contr. Sys. Tech., vol.
12, no. 1, pp.156-166, 2004.
[21] T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by
PID+Q controller,” Int. J. Control, vol. 70, no. 4, pp. 631-650, 1998.
[22] A. C. Sanderson, and L. E. Weiss, “Image-based visual servo control
using relational graph error signals,” Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1074-1077, 1980.
[23] S. Hutchinson, G. Hager and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robotics Automat., vol. 12, no.5, pp. 651–670,
Oct. 1996.
[24] M. Reyhanoglu, A. Schaft, N. H. McClamroch and I. Kolmanovsky, “Dynamics
and control of a class of underactuated mechanical systems,” IEEE Tran.
Automatic Control, vol. 44, no. 9, pp.1663-1671, 1999.
[25] F. Bullo, N. E. Leonard and A. D. Lewis, “Controllability and motion
algorithms for underactuated Lagrangian systems on Lie Groups,” IEEE
Tran. Automatic Control, vol. 45, no. 8, pp. 1437-1454, 2000.
[26] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled
trajectory planning in underactuated mechanical systems,” IEEE Tran.
Robotics and Automation, vol. 17, no. 4, pp. 402-412, 2001.
[27] Z. Sun, S. S. Ge and T.H Lee, “Stabilization of underactued mechanical
systems: a non-regular backstepping approach,” Int. J. Control, vol. 74,
no. 11, pp. 1045-1051, 2001.
[28] J. Á. Acosta, R. Ortega, A. Astolfi and A. D. Mahindrakar,
“Interconnection and Damping Assignment Passivity-Based Control of
Mechanical Systems With Underactuation Degree One,” IEEE Tran. Automatic
Control, vol. 50, no. 12, pp.1936-1955, 2005.
[29] A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, “Constructive Tool for
Orbital Stabilization of Underactuated Nonlinear Systems: Virtual
Constraints Approach,” IEEE Tran. Automatic Control, vol. 50, no. 8,
pp.1164-1176, 2005.
[30] R. Jain, R. Kasturi and B. G.. Schunck, MachineVision, McGraw-Hall, Inc.,
1995.
[31] H. K. Khalil, Nonlinear systems, 3rd Edition, Prentice Hall, 2002. |