博碩士論文 93521113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.216.174.32
姓名 洪振凱(Chen-Kai Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 電子式基因微陣列晶片與應用電路研究
(Research on Electrical MicroArray Chips and Application Circuit)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子聽診系統應用於左右肺部比較之臨床研究★ 建立於隨身聽的數位式電子聽診器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究著重於發展出一適於使用電子式量測的基因陣列晶片,利用單股去氧核糖核酸(DNA)互補雜交的特性,在晶片上電容陣列之各電容裡固定不同的DNA序列,即可進行多點不同DNA序列的判斷。實驗中以直徑15 nm金奈米粒子標定有雜交的DNA序列,使有無雜交的DNA序列造成受測電容明顯不同的介電係數,並根據電容量測而推測DNA有無雜交。
初期研究實驗上使用多參數陣列式基因晶片。此型晶片主要目的在於,測得晶片上電極對尺寸的最佳條件,以利往後單參數陣列式晶片的設計。故多參數晶片為了降底背景電容的影響,會使用不同於矽基板的玻璃基板以保證參數所得的正確性。單參數晶片實際為電容陣列,在製程上使用三道金屬製程。為了避免晶片本身寄生電容造成量測上的錯誤,在晶片的金屬層1與金屬層2間使用BCB(BenzoCycloButene)取代傳統的二氧化矽 (SiO2)當作金屬隔離層;金屬層2與金屬層3間的隔離層一樣採用SiO2以提供化學製程的相容性。
量測DNA雜交電容值的方法上,多參數陣列式基因晶片主要搭配LCR Meter來量測。單參數陣列式基因晶片主要以自製的量測電路做量測。根據多參數晶片測得的結果,DNA雜交後的電容依然在fF這個數量級,因此為了讓外部量測電路可量測到晶片較低的電容值,量測時會以多點並聯電極對的方式加大受測電容值。
研究上成果顯示,使用多參數基因晶片在DNA有雜交的情況下,與空白晶片電容相比較,電容最大可提升62.35 %;而DNA有雜交電容與DNA無雜交電容相比,電容最高提升為18.47 %。使用單參數基因晶片,DNA有雜交電容與DNA無雜交電容相比,電容最大可提升20.31 %。
摘要(英) This research focuses on developing an electrical measurement of Array Gene Chip. Utilizing the characteristic of hybridization of complemented single strand deoxyribonucleic acid (DNA), we can distinguish different DNA sequences by immobilizing different DNA sequences on different positions of Capacitance-Array-Chip. During the experiments, we labeled the Gold Nanoparticles (Diameter = 15 nm) on hybridized DNA sequences to bring obvious changes of dielectric constant and compared those with non-hybridized DNA to speculate whether the DNA hybridized or not.
We used the multi-parameter array-type genetic chip on the experiment in early study. This type’s main purpose was to examine optimal chip’s electrode conditions and use it to design the single-parameter array-type genetic chip. Therefore, we used glass substrates which are different from silicon substrates to lower the influences of background capacitance and guarantee the correctness of parameters extracted from those. Single-parameter chip is really a capacitance array made by 3 metal-layers in process. In order to avoid the mistakes caused by chip’s parasitic capacitance in measuring, this chip replaced traditional silica (SiO2) with BenzoCycloButene (BCB) between metal-l and metal-2 as the metal isolation, and also adopted the same material SiO2 to provide the compatibility of chemical process between metal-l and metal-2.
By the method of measuring DNA-hybridization capacitance, multi-parameter array-type genetic chip mainly works with LCR Meter. Single-parameter array-type genetic chip mainly adopts our developing measuring circuit on the experiment to measure capacitance. According to the experimental results of using multi-parameter chip, the capacitance after DNA hybridization is still in the order of fF. Therefore, in order to make sure outside circuit system can measure the lower capacitance on the chip, we will parallel more electrodes to magnify values of measured capacitance.
Experiment results with multi-parameter gene chips showed that the capacitance values in the electrode pairs with DNA hybridization were enhanced by 62.35 % from blank electrode pairs. The maximum capacitance difference between the electrode pairs with hybridization and those without hybridization is 18.47 %. With single-parameter gene chips, the capacitance difference between the electrode pairs with hybridization and those without hybridization could be up to 20.31 %.
關鍵字(中) ★ 雜交
★ 基因晶片
★ 金奈米粒子
★ 介電係數
★ 微陣列
★ 寄生電容
關鍵字(英) ★ MicroArray
★ Hybridization
★ Gene chip
★ Parasitic capacitance
★ Dielectric constant
★ Gold nanoparticles
論文目次 中文摘要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 DNA分子特性 3
1.3.2 介電特性 6
1.3.3 基因晶片發展現況 9
第二章 陣列式基因晶片設計與製造 13
2.1晶片設計 13
2.1.1 電極圖案設計 13
2.1.2 導孔與輸出入Pad設計 18
2.2 實驗器材及實驗方法 20
2.2.1 晶片製備設備 20
2.2.2 基板選用 23
2.2.3 製程參數與步驟 24
第三章 晶片表面改質與DNA固定化 36
3.1 表面改質與生物分子固定化 36
3.1.1 分子自組單層膜 37
3.1.2 DNA分子固定化 38
3.1.3 金奈米粒子 39
3.2 實驗器材及實驗方法 40
3.2.1 實驗藥品 40
3.2.2 實驗設備 43
3.2.3 實驗方法與設計 45
第四章 DNA雜交量測電路實現 49
4.1 量測電路系統規劃 49
4.2 量測電路模擬 51
4.3 硬體架構實現 53
4.4 程式設計 60
4.4.1 單晶片軔體程式 61
4.4.2 個人電腦端軟體程式 63
第五章 結果與討論 67
5.1 晶片製程結果 67
5.2 DNA固定化結果 72
5.2.1 接觸角量測實驗 72
5.2.2 原子力顯微鏡量測結果 73
5.2.3 表面化學分析電子能譜儀分析結果 75
5.2.4 DNA雜交溫度的影響 77
5.3 感測電路硬體組裝結果 80
5.4 DNA量測結果 84
5.4.1 多參數陣列式基因晶片量測結果 85
5.4.2 陣列式基因晶片量測結果 90
第六章 結論與未來展望 98
參考文獻 100
附錄一:8051端程式碼 105
附錄二:PC端–8051控制介面程式碼 107
附錄三:圖形介面程式碼 111
參考文獻 [1] D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and DNA arrays,” Nature, vol. 405, pp. 827-836, June 2000.
[2] B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol., vol. 152, pp. 1-12, 2005.
[3] S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes”, Science, vol. 295, pp. 1503-1506, 2002.
[4] 彭敬欽,以電訊號檢測DNA之CMOS微陣列生物晶片系統,碩士論文,陳炳煇教授指導,國立台灣大學機械研究所,2003。
[5] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive Biosensors”, Electroanalysis, vol. 13, pp. 173-180, 2001.
[6] 潘震澤、楊志剛、高毓儒、黃娟娟、袁宗凡、謝坤叡,人體生理學,第三版,台灣台北:合記圖書出版社,2005,第三章第二節。
[7] 林志生、袁俊傑、吳東昆、林玉娟、生物感測技術與應用(Ⅱ),中北區(交通大學)奈米科技人才培育中心,2004。
[8] S. Grimnes and O. G. Martinsen, Bioimpedance And Bioelectricity Basics, first edition, New York: Academic Press, 2000. ch. 3.
[9] M. Yi, K. H. Jeong, and L. P. Lee, “Theoretical and experimental study towards a nanogap dielectric biosensor,” Biosensors and Bioelectronics, vol. 20, pp. 1320-1326, Jan 2005.
[10] W. Cai, J. R. Peck, D. W. Van der Weide, and R. J. Hamers, “Direct electrical detection of hybridization at DNA-modified silicon surfaces,” Biosensors and Bioelectronics, vol. 19, pp. 1013-1019, 2004.
[11] G. Laurent, L. M. Hagelsieb, D. Lederer, P. E. Lober, D. Flandre, J. Remacle, and J. P. Raskin, “DNA Electrical Detection Based on Inductor Resonance Frequency in Standard CMOS Technology,” IEEE Solid-State Circuits Conference, pp. 337-340, Sept. 2003.
[12] J. Li, C. Xu, Z. Zhang, Y. Wang, H. Peng, Z. Lu, and M. Chan, “A DNA-detection platform with integrated photodiodes on a silicon chip,” Sensors And Actuators B: Chemical, vol. 106, pp. 378-382, April 2005.
[13] T. Strother, R. J. Hamers, and L. M. Smith, “Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces,” Nucleic Acids Research, vol. 28, pp. 3535-3541, 2000.
[14] 洪振凱,高速低功率優先編碼器,專題報告,李進褔教授指導,國立中央大學電機研究所,2006。
[15] ASE Kaohsiung, Wire Bond Rule, Available:
http://www.asetwn.com.tw/content/2-2-1.html
[16] Kulicke & Soffa, Bond Rad Pitch, Available:
http://www.kns.com/capcentral/BondPadPitch.asp?menu=1
[17] 羅正忠、李嘉平、鄭湘原,半導體工程-先進製程與模擬,第一版,台灣台北:台灣培生教育出版股份有限公司,2002,頁 13-33。
[18] 蔡宜樺,應用奈米電極檢測之單一核酸多型性生物晶片,碩士論文,陳炳煇教授指導,國立台灣大學機械研究所,2003。
[19] 洪志明,高速磷化銦異質接面雙載子電晶體之研製,碩士論文,辛裕明教授指導,國立中央大學電機研究所,2003。
[20] 王志豪,單股DNA於微奈米溝槽電極之基因晶片上固定化與雜交效率之最佳化,碩士論文,陳文逸教授指導,國立中央大學化 學工程與材料工程所,2005。
[21] E. Gizeli and C. R. Lowe, “Biomolecular Sensors,” London: Taylor and Francis, pp. 87-120, 2002.
[22] A. Ulman, “Formation and structure of self-assembled monolayers,” Chemistry Review, vol. 96, pp. 1533-1554, 1996.
[23] A. Pallandre, K. Glinel, A. M. Jonas, and B. Nysten, “Binary nanopatterned surfaces prepared from silane monolayers,” Nano Letters, vol. 4, pp. 365-371, 2004.
[24] B. A. Cavic, M. E. McGovern, R. Nisman, and M. Thompson, “High surface density immobilization of oligonucleotide on silicon,” Analyst, vol. 126, pp. 485-490, 2001.
[25] L. A. Chrisey, G. U. Lee, and C. E. O’Ferrall, “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Research, vol. 24, pp. 3031–3039, 1996.
[26] M. A. Hayat, Collodial gold: principle, methods, and application, first edition, San DIEGO: Academic, 1989.
[27] 許士忠,電子式基因序列偵測晶片可行性之研究,碩士論文,蔡章仁老師指導,國立中央大學電機工程研究所,2003。
[28] C. A. Mirkin, R. L. Lestinger, R. C. Mucic, and J. J. Storhoff, “DNA-based method for rotationally assembling nanoparticles into macroscopic material,” Nature, vol. 382, pp. 607-609, 1996.
[29] A. J. Chnningham, Introduction to Bioanalytical Sensors (Techniques in Analytical Chemistry), New York: Wiley-Interscience, 1998.
[30] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, first edition, New Jersey: Prentice Hall Inc, 2002.
[31] L. A. Chrisey, G. U. Lee, and C.E. O'Ferrall, “Covalent attachment of synthetic DNA to self-assembled monolayer films”, Nucleic Acids Reaseach, vol. 24, no. 15, pp. 3031-3039, 1996.
[32] C. A. Mirkin, “Programming the assembly of Two-and Three Dimensional Architecture with DNA and nanoscale Inorganic building blocks,” Inorganic Chemistry, vol. 39, pp. 2258-2272, 2000.
[33] C. A. Mirkin, “Programming the assembly of Two-and Three Dimensional Architecture with DNA and nanoscale Inorganic building blocks,” Inorganic Chemistry, vol. 39, pp. 2258-2272, 2000.
[34] C. Berggren, P. Stålhandske, J. Brundell, and G. Johansson, “A Feasibility Study of a Capacitive Biosensor for Direct Detection of DNA Hybridization,” Electroanalysis, vol. 11, no. 3, pp. 156-160, 1999.
[35] Intersil, ICL8038(datasheet), Available:
http://www.intersil.com/cda/deviceinfo/0,1477,ICL8038,0.html
[36] Texas Instruments, MPC508(datasheet), Available:
http://focus.ti.com/docs/prod/folders/print/mpc508.html
[37] Analog Devices, AD637(datasheet), Available:
http://www.analog.com/en/prod/0%2C2877%2CAD637%2C00.html
[38] National Semiconductor, ADC0804(datasheet), Available:
http://www.national.com/search/search.cgi/main?keywords=ADC0804
[39] Atmel, AT89C51(datasheet), Available:
http://www.atmel.com/dyn/products/product_card.asp?family_id=604&family_name=8051+Architecture&part_id=1930
[40] 陳明熒,單晶片8051 KEIL C實作入門,第一版,台灣台北:文魁資訊股份有限公司,2005。
[41] F. P. Schwarz, S. Robinson, and J. M. Butler, “Thermodynamic Comparison of PNA/DNA and DNA/DNA hybridization reactions at ambient temperature,” Nucleic Acids Reaearch, vol. 27, no. 24, pp. 4792-4800, 1999.
[42] S. C. Tao, Y. Li, Y. H. Liu, X. M. Ma, and J. Cheng, “Room-Temperature Hybridization of Target DNA with Microarrays in Concentrated Solutions of Guanidine Thiocyanate,” BioTechniques, vol. 34, pp. 1260-1262, 2003.
[43] Agilent, 4284A(datasheet), Available:
http://www.home.agilent.com/TWcht/nav/-11891.536880951/pd.html
[44] M. Ikeda, K. Nakazato, H. Mizuta, M. Green, D. Hasko, and H. Ahmed, “Frequency-dependent electrical characteristics of DNA using molecular dynamics simulation,” Nanotechnology, vol. 14, pp. 123-127, 2003.
[45] 梁柏榮,電子式基因序列偵測晶片之原型,碩士論文,蔡章仁老師指導,國立中央大學電機工程研究所,2003。
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明