博碩士論文 945201019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.226.226.151
姓名 陳致宏(Jhih-Hong Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
(The Design and Implementation of WiMAX Feed-forward Power Amplifiers, High Efficiency Class F Power Amplifiers and Voltage Controlled Oscillators)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究
★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究
★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製
★ 應用於K / V 頻段低功耗混頻器之研製★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究
★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此篇論文描述了數個應用於微波存取全球互通系統之射頻電路設計,分別以TSMC 0.18 μm CMOS製程與TSMC 0.35 μm SiGe BiCMOS製程來實現,所實現電路有兩個前向匯入式功率放大器、兩個Class F類功率放大器、四相位壓控振盪器與考畢茲壓控振盪器電路。兩個前向匯入式功率放大器與兩個Class F類功率放大器,採用二階式發射機的系統架構上,應用在2.6 GHz頻段為了行動式微波存取全球互通系統需求。而四相位壓控振盪器與考畢茲壓控振盪器,採用鏡像消除式架構降頻器的超外插接收機架構上,分別應用在3220 ~ 3300 MHz頻段與6440 ~ 6600 MHz的頻段上,用來當作固定式微波存取全球互通系統的應用。以下依各章節不同的電路來分類,概述論文中各電路的實際量測結果。
第二章為射頻發射機子電路的設計,包括了兩個前向匯入式功率放大器與兩個Class F類功率放大器,每一種型態的功率放大器,都分別採用TSMC 0.18 μm CMOS製程與TSMC 0.35 μm SiGe BiCMOS製程來實現。以TSMC 0.35 μm SiGe BiCMOS製程實現的前向匯入式功率放大器而言,約有12.4 dB的增益、大於10 dB輸入回返損耗、約9.3 dB的輸出回返損耗、20.3 dBm的輸出1-dB增益壓縮點、33 dBm的輸出三階截斷點、1-dB增益壓縮點的功率增進效率為19.2 %;以TSMC 0.18-μm CMOS製程實現的前向匯入式功率放大器而言,約有12.2 dB的增益、約4.7 dB輸入回返損耗、大約10.3 dB的輸出回返損耗、22.1 dBm的輸出1-dB增益壓縮點、33.2 dBm的輸出三階截斷點、1-dB增益壓縮點的功率增進效率為26.6 %;以TSMC 0.18 μm CMOS製程實現的Class F類放大器而言,有13.1 dB的增益、約9 dB輸入回返損耗、大約15.3 dB的輸出回返損耗、20.2 dBm的輸出1-dB增益壓縮點、25.4 dBm的輸出三階截斷點、1-dB增益壓縮點的功率增進效率為24.4 %;以TSMC 0.35 μm SiGe BiCMOS製程實現的Class F類放大器而言,有18.3 dB的增益、大於15 dB輸入回返損耗、約6.6 dB的輸出回返損耗、20.6 dBm的輸出1-dB增益壓縮點、30.8 dBm的輸出三階截斷點、1-dB增益壓縮點的功率增進效率為25.8 %。
第三章則為壓控振盪器的設計,一個是四相位震盪器用在3220 ~ 3300 MHz的頻段上,一個是考畢茲壓控振盪器用在6440 ~ 6600 MHz頻段上。四相位壓控振盪器具有214 MHz的可調範圍,輸出功率為-9 ~ -5 dBm,離主頻1 MHz之相位雜訊為-110.875 dBc/Hz,振盪器本身消耗功率為9.94 mW;而考畢茲壓控振盪器,可調範圍為354 MHz,輸出功率為-11.7 ~ -11 dBm, 離主頻1 MHz之相位雜訊為-122 dBc/Hz,振盪器的本身消耗功率為19.1 mW。
摘要(英) This thesis describes several radio frequency circuit designs for WiMAX applications. They are implemented in TSMC 0.35 ?m SiGe BiCMOS and 0.18 ?m CMOS technologies, respectively. The implemented circuits include two Feed-forward power amplifiers, two Class F power amplifiers, a quadrature voltage controlled oscillator (QVCO), and a Colpitts VCO. Two 2.6 GHz Feed-forward and two Class F power amplifiers are realized in the two-step transmitter architecture for mobile WiMAX system requirements.The QVCO and Colpitts VCO are realized in super-heterodyne architecture with image rejection mixer, their operating frequencies are 3220 ~ 3300 MHz and 6440 ~ 6600 MHz, respectively. The following sections will summarize the practical measured results which will be thoroughly presented in following chapters.
Chapter 2 introduces the designs of sub-circuits of radio frequency transmitter, including two feed-forward power amplifiers and two Class F power amplifiers. These power amplifiers are implemented in TSMC 0.35 ?m SiGe BiCMOS and 0.18 ?m CMOS technologies, respectively. The feed-forward power amplifier implemented in 0.35 ?m SiGe BiCMOS technology provides a power gain of 12.4 dB with input return loss better than 10 dB, output return loss of 9.3 dB and, an output P1dB of 20.3 dBm, an output IP3 of 33 dBm, a PAE@ P1dB of 19.2 %. The CMOS feed-forward power amplifier provides a power gain of 12.2 dB with input return loss about 4.7 dB, an output return loss of 10.3 dB, an output P1dB of 22.1 dBm, an output IP3 of 33.2 dBm, a PAE@ P1dB of 26.6 %. The CMOS Class F power amplifier implemented provides a power gain of 13.1 dB with input return loss about 9 dB, an output return loss of 15.3dB, an output P1dB of 20.2 dBm, an output IP3 of 25.4 dBm, a PAE@ P1dB of 24.4 %. The SiGe Class F power amplifier provides a power gain 18.3 dB with input return loss better than 15 dB, an output return loss of about 6.6 dB, an output P1dB of 20.6 dBm, an output IP3 of 30.8 dBm, a PAE@ P1dB of 25.8 %.
Chapter 3 introduces the designs of VCOs, including QVCO for 3220 ~ 3300 MHz band, and Colpitts VCO for 6440 ~ 6600 MHz band. The QVCO achieves a tuning range of 214 MHz, an output power of -9 ~ -5 dBm, The phase noise at 1 MHz offset carrier frequency is -110.875 dBc/Hz under a power consumption of the VCO core of 9.94 mW. The Colpitts VCO achieves a tuning range of 354 MHz, an output power of -11.7 ~ -11 dBm, The phase noise at 1MHz offset carrier frequency is -122 dBc/Hz under a power consumption of the VCO core of 19.1mW.
關鍵字(中) ★ 前向匯入式功率放大器
★ Class F類功率放大器
★ 壓控振盪器電路
關鍵字(英) ★ Feed-forward Power Amplifiers
★ Class F Power Amplifiers
★ Voltage Controlled Oscillators
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XVIII
第一章 緒論............................................................................................................. 1
1-1 微波存取全球互通系統介紹..................................................................... ...........1
1-2 研究動機與系統架構 ...........................................................................................4
1-3 章節簡述 ...............................................................................................................6
第二章 WiMAX功率放大器................................................................................... 8
2-1 功率放大器概述.....................................................................................................8
2-1.1功率放大器簡介.............................................................................................. 8
2-1.2功率放大器重要規格參數.............................................................................. 9
2-2 功率放大器基本分類....................................................................................... .. 11
2-2.1 Class A , AB , B , 和 C 功率放大器........................................................... 11
2-2.2 Class D , E 和 F類功率放大器 ................................................................. 14
2-2.3功率放大器歸類的總結.................................................................................18
2-3 線性功率放大器...................................................................................................19
2-4 應用於WiMAX系統高線性度前向匯入式功率放大器電路...........................28
2-4.1 可適性偏壓操作原理....................................................................................28
2-4.2 前向匯入式功率放大器的設計與概念與多級放大器之系統規劃............35
2-4.3 高線性度前向匯入式功率放大器電路之實現 (SiGe HBT製程) ............38
2-4.3.1電路架構與原理....................................................................................38
2-4.3.2設計流程................................................................................................41
2-4.3.3量測結果與討論....................................................................................42
2-4.4 高線性度前向匯入式功率放大器電路之實現 (CMOS製程) ..................56
2-4.4.1電路架構與原理....................................................................................56
2-4.4.2設計流程................................................................................................58
2-4.4.3量測結果與討論....................................................................................59
2-5高效率兩級Class AB / Class F類功率放大器....................................................75
2-5.1 Class F類功率放大器設計與選用輸出網路的共振腔................................75
2-5.2 高效率兩級Class AB/Class F類功率放大器電路之實現(CMOS製程) ...80
2-5.2.1電路架構與原理....................................................................................80
2-5.2.2設計目標................................................................................................83
2-5.2.3量測結果與討論....................................................................................83
2-5.3 高線性度兩級Class AB / Class F類功率放大器.........................................93
2-5.3.1電路架構與原理....................................................................................93
2-5.3.2設計目標................................................................................................98
2-5.3.3量測結果與討論....................................................................................99
第三章 壓控振盪器................................................................................................108
3-1壓控振盪器簡介................................................................................................. 108
3-1.1壓控振盪器重要規格參數.......................................................................... 109
3-1.2 振盪器理論................................................................................................. 111
3-2應用於WiMAX系統之四相位壓控振盪器...................................................... 119
3-2.1四相位信號的產生...................................................................................... 119
3-2.2應用於WiMAX系統之四相位壓控振盪器電路之實現........................... 121
3-2.2.1 電路架構與原理.................................................................................121
3-2.2.2 設計流程............................................................................................ 123
3-2.2.3 量測結果............................................................................................ 124
3-2.2.4 結果討論............................................................................................ 132
3-3應用於WiMAX系統之6440 ~ 6600 MHz之考必茲壓控振盪器. .... ........... 133
3-3.1 電路架構與原理.................................................................................... .....133
3-3.2 設計流程......................................................................................................137
3-3.3 量測結果......................................................................................................139
3-3.4 結果討論......................................................................................................145
第四章 結論 ............................................................................................................146
參考文獻....................................................................................................................150
參考文獻 [1] B. Bisla, R. Eline, and L.M. Franca-Neto, “RF System and Circuit Challenges for WiMAX,” Intel Technology Journal, vol. 8, No. 3, pp. 189-199, Aug. 2004.
[2] A. Ghosh, D.R. Wolter, J.G. Andrews, and R. Chen, “Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,” IEEE Communications Magazine, vol. 43, No. 2, pp. 129-136, Feb. 2005.
[3] S.M. Cherry, “WiMax and Wi-Fi Separate and Unequal,” IEEE Spectrum, vol. 41, No. 3, pp. 16-16, Mar. 2004.
[4] T. K. K. Tsang and M. N. El-Gamal, “Gain controllable very low voltage (<1V) 8-9 GHz integrated CMOS LNAs,” in IEEE RFIC Symp. Dig., pp. 205-208, June, 2002.
[5] M. Hella and M. Ismail, “RF CMOS Power Amplifiers: Theory, Design and Implementation”, Kluwer Academic Publishers, 2002.
[6] S. C. Cripps, “RF Power Amplifiers for Wireless Communications” Artech House, 1999.
[7] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998.
[8] S.C Cripps, “RF Power Amplifier for Wireless Communication”, ARTECH S. C. HOUSE, INC. ,1999
[9] P. Asbeck, “Linearization of RF Power Amplifiers”, Nokia Mobile Phones and Department of Information Technology Technical University of Denmark, PhD thesis,2001.
[10] D. Y. C. Lie, P. Lee, J. D. Popp, J. F. Rowland, H. H. Ng and A. H. Yang, “The Limitations in Applying Analytic Design Equations for Optimal Class E RF Power Amplifier Design”, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA
[11] C. C. Chu, “Design and Implementation of High-Efficiency 2.4GHz Class-E Power Amplifier MMICs and Modules”, Master Thesis, Department of Electrical Engineering, National Sun Yat-Sen University, July, 2003
[12] F.H.Raab, “Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics,” IEEE Trans. Microwave Theory Tech., vol 47, pp.1462-1468, Aug.2001.
[13] S.D.Kee, I.Aoki, A. Hajimiri, and D. B.Rutledge, “The Class-E/F Family of ZVS Switching Amplifiers, ” IEEE Transactions on Microwave Theory and Techniques,vol.51,2003.
[14] F.H.Raab,P.Asbeck,S.Cripps,P.B.Kenington, Z.BPopovic, N.Pothecary, J.F.Sevic, and N.O.Sokal, “Power Amplifiers and Transmitters for RF and Microwave, ” IEEE Transactions on Microwave Theory and Techniques,vol.50,2002.
[15] D.C Cox, “Linear amplification by sampling techniques: a new application for deltacoders”, IEEE Transactionson Communication, vol.23, NO.8,pp. 793-798, Aug. 1975
[16] V.Petrovic, W.Gosling, “Polar-LoopTransmitter”, ElectronicsLetters, Vol.15, NO.10, May, 1979.
[17] E.Eid, F.M.Ghannouchi, “Adaptive Nulling Loop Control for 1.7GHz Feed-forward Linearization Systems”, IEEE Transaction on Microwave Theory and Technique, Vol.45, No.1 , pp. 83-86, January, 1997.
[18] D.C.Cox, “Linear Amplification with Nonlinear Components”, IEEE Transaction on Communication, pp. 1942-1945, Dec., 1974.
[19] A.Bateman, “Combined Analogue Locked Loop Universal Modulator”, Proc. Of the 24tnd IEEE Vehicular Technology Conference, pp. 759-763 May, 1992.
[20] L. R. Kahn, “Single sideband transmission by envelopeelimination and restoration,” in Proc. IRE, vol. 40,pp.803-806, Jul. 1952.
[21] F. H. Raab and D. J. Rupp, “High-efficiency multimode HF/VHFtransmitter for communication and jamming,” in Proc. IEEE Conf. Rec.(MILCOM’94), vol. 3, 1994, pp. 880–884.
[22] Sahu and G. A. Rincon-Mora, “System-level requirements of dc–dcconverters for dynamic power supplies of power amplifiers,” in Proc.IEEE Asia-Pacific Conf. (ASIC’02), 2002, pp. 149–152.
[23] F. H. Raab, “Drive modulation in Kahn-technique transmitters,” in IEEEMTT Symp. Dig., vol. 2, June 1999, pp. 811–814.
[24] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, O. Ishida, “A novel series diode linearizer for mobile radio power amplifiers,” Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume 2, 17-21 June 1996.
[25] K. Yamauchi ,K. Mori, M. Nakayama, Y. Mitsui, and T.i Takagi, “A Microwave Miniaturized Linearizer Using A Parallel Diode,” IEEE MIT-S Digest, pp.1199-1202, 1997.
[26] Y. S. Noh, and C. S. Park, “PCS/W-WCDMA Dual-Band MMIC Power Amplifier With a Newly Proposed Linearizing Bias Circuit,” IEEE Journal of Solid-State Circuits, vol.37, No.9, 2002.
[27] J.H. Kim, Y.S. Noh and C.S. Park “MMIC Power Amplifier Adaptively Linearized With RF Coupled Active Bias Circuit For W-CDMA Mobile Terminals Applications” Microwave Symposium Digest, 2003 IEEE MTT-S International,Volume 3, 8-13, pp :2209 - 2212 vol.3 June 2003
[28] Pei-Der Tseng, Liyang Zhang, Guang-Bo Gao, and M.Frank Chang, “A 3-V Monolithic SiGe HBT Power Amplifier for Dual-Mode (CDMA/AMPS) Cellular Handset Applications”, IEEE Journalof solid-state Circuits, VOL.35, No.9, SEPTEMBER 2000
[29] Youn Sub Noh, and Chul Soon Park, “PCS/W-WCDMA Dual-Band MMIC Power Amplifier With a Newly Proposed Linearizing Bias Circuit,” IEEE Journal of Solid-State Circuits, vol.37, No.9, 2002
[30] Joon H.Kim,Ji H Kim,Youn S Noh and Chul S.Park “MMIC Power AmplifieerAdaptively Linearized With RF Coupled Active Bias Circuit For W-CDMA Mobile Terminals Applications”2003
[31] Toshihiko Yoshimasa, Masanori Akagi, Noriyki Tanba, and Shinihi Hara, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Applications,” IEEE Journal of Solid-State Circuits, vol. 33, No.9, September 1998
[32] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill International Editoon, 2001
[33] C. C. Yen and H. R. Chuang, “A 0.25um 20-dBm 2.4GHz CMOS Power Amplifier with an Integrated Diode Linearizer”, IEEE Microwave and Wireless Components Letters, vol.13. No. 2, February 2003
[34] C. Wang, L. E. Larson and P. M. Asbeck, “A Nonlinear Capacitance Cancellation Technique and its Application to a CMOS Class AB Power Amplifier”, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.39-42, 2001.
[35] Y. Ding and R. Harjani, “A CMOS High Efficiency +22dBm Linear Power Amplifier,” IEEE 2004 Custom Integrated Circuits Conference, pp.557-560, 2004.
[36] H. L. Krauss, C. W. Bostian, and F. H. Raab, Solid State Radio Engineering.
New York: Wiley, 1980.
[37] F. H. Raab, “An introduction to class-F power amplifiers,” RF Design,
vol. 19, no. 5, pp. 79–84, May 1996.
[38] F. H. Raab, “Class-F power amplifiers with maximally flat waveforms,”IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2007–2012, Nov.1997
[39] F. H. Raab,“Maximum efficiency and output of class-F power amplifiers,”IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1162–1166, June 2001
[40] F. H. Raab,“Class-F power amplifiers with reduced conduction angles,” IEEE Trans. Broadcast., vol. 44, pp. 455–459, Dec. 1998
[41] Huang Min Zhel, Abu Khari Bin A'ain2, and Albert Victor Kordeschl, “An Integrated 2.4GHz CMOS Class F Power Amplifier,” ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia.
[42] Chris Trask, “Class-F amplifier loading networks: a unified design approach,” Microwave Symposium Digest, 1999 IEEE MTT-S International Volume 1, 13-19 June 1999
[43] Young Yun Woo; Youngoo Yang; Bumman Kim, “Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers,” IEEE Trans. Microwave Theory Tech., Vol 54, Issue 5, May 2006.
[44] Shingo Yamanouchi, Yuuichi Aoki, Kazuaki Kunihiro, Tomohisa Hirayama, Takashi Miyazaki, and Hikaru Hida, “Analysis and Design of a Dynamic Predistorter for WCDMA Handset Power Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 55, NO. 3, MARCH 2007.
[45] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May 2000.
[46] T. H. Lee and A. Hajimiri,” Oscillator Phase Noise: A Tutorial”, 2000 IEEE J. Solid-State Circuits, vol.: 35, Issue: 3, pp. 326-336, Mar. 2000.
[47] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A Low-Phase-Noise 5-GHz Quadrature VCO Using Superharmonic Coupling,” in IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
[48] H.-R. Kim, and C.-Y. Cha, and S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A Very Low-Power Quadrature VCO With Back-Gate Coupling,” in IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
[49] J. Y. Chang, C.-H. W, and S.-I. Liu, “A Low-Phase-Noise Low-Phase-Error 2.4GHz CMOS Quadrature VCO,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 281–284, Nov. 2005.
[50] A. Fard and P. Andreani, “A Low-Phase-Noise Wide-Band CMOS Quadrature VCO for Multi-Standard RF Front-Ends,” in Proc. IEEE RFIC Symp., pp. 539-542, June 2005.
[51] S-M Moon, M-Q Lee, and B-S Kim, “Design of Quadrature CMOS VCO using Source Degeneration Resistor,” in Proc. IEEE RFIC Symp., pp. 535-538, June 2005.
[52] Behzad Razivi, RF Microelectronics, Prentice Hall PTR, 1997.
[53] “ Improved switched tuning of differential CMOS VCOs” Sjoland,H.;Volume 49, Issue 5, May 2002 Page(s)
[54] Chung-Yu Wu; Chi-Yao Yu “ A 0.8 V 5.9 GHz wide tuning range CMOS VCO using inversion-mode bandswitchingvaractors”;Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):5079 - 5082 Vol. 5
[55] Aparicio,R.;Hajimir ”A noise-shifting differential Colpitts VCO” i,A.;Solid-State Circuits, IEEE Journal of Volume 37, Issue 12, Dec. 2002 Page(s):1728-1736
[56] Fong, N.H.W.; Plouchart, J.-O.; Zamdmer, N.; Duixian Liu; Wagner, L.F.; Plett, C.; Tarr, N.G “Design of wide-band CMOS VCO for multiband wireless LAN applications ”.;Solid-State Circuits, IEEE Journal of Volume 38, Issue 8, Aug. 2003 Page(s):1333 – 1342
[57] D. I. Sanderson and S. Raman, “5-6 GHz SiGe VCO withtunable polyphase output for analog image rejection and I/Q mismatch compensation,” 2003 IEEE M7T-S Int.MicrowaveS’p. Dig., vol. 1, pp. 169-172, June 2003.
[58] Ahmed 1. Khalil, Peter Katzin, Hittite Microwave Corporation, Chelmsford, MA, 01 824, USA,”A Low Power High Performance 4GHz SiGe HBT VCO, ” IEEE Trans. Microwave Theory Tech. 2004
[59] Jean-Olivier Plouchart, Bernd-Ulrich Klepser*, Herschel Ainspan, Mehmet Soyuer “Fully-Monolithic 3V SiGe Differential Voltage-Controlled Oscillators for 5GHz”and 17GHz Wireless Applications
[60] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[61] 陳冠宇,“應用於微波存取全球互通之收發機研製,”碩士論文, 2006, 國立 中央大學。
[62] 李金龍, “雜訊消除放大器與寬頻矩陣型分佈放大器暨壓控振盪器之研製,” 碩士論文, 2006, 國立中央大學。
[63] 廖仁傑, “互補是金氧半導體之射頻功率放大器及數位電視前端寬頻低雜訊放大器設計,” 碩士論文, 2005, 國立中央大學。
[64] 林貴城, “應用於寬頻劃碼多工進接系統及無線區域網路線性補償功率放大器之研製,” 碩士論文, 2005, 國立中央大學。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2007-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明