博碩士論文 945201032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.217.10.200
姓名 梁可駿(Keko-chun Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製
(Impulse Sensitivity Function Analysis for Phase Noise Characteristic of Voltage Controlled Oscillator and Implementation of K-band Differential Low Noise Amplifier)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的內容為壓控振盪器相位雜訊生成機制之探討與低雜訊放大器之實作。在相位雜訊探討的部分,是以時變系統的觀點分析振盪電路中各雜訊源對相位雜訊的影響,並且以實作的量測結果驗證本論文對相位雜訊的論述。使用TSMC CMOS 0.18-μm 製程實現的振盪電路包括(1)互補式交錯耦合壓控振盪器,振盪中心頻率為5.2 GHz,可調頻率範圍633 MHz,偏移主頻1 MHz 之相位雜訊為-120.2 dBc/Hz,優化指數(FOM)為-185.3 dBc/Hz;(2)雜訊平移考畢茲(Colpitts)壓控振盪器,振盪中心頻率為12.6 GHz,可調頻率範圍227 MHz,偏移主頻1 MHz 之相位雜訊為-110.3 dBc/Hz,優化指數(FOM)為-182.74 dBc/Hz;(3)低功率消耗雙變壓器耦合壓控振盪器,振盪中心頻率為12.8 GHz,可調頻率範圍136 MHz,偏移主頻1MHz 之相位雜訊為-97.08 dBc/Hz,功率消耗為0.6 mW,優化指數為-181.53 dBc/Hz 。
隨著越來越多的無線傳輸應用,現今對大量資料傳輸系統的需求已經變的更加迫切,使得我們需要更高的資料傳輸速率系統規範,因此在通訊系統規格也將載波頻率提升換取更大的頻寬,其中一個例子為K-頻段802.16 WMAN 的系統規格,因此在本論文中實現K-頻段的低雜訊放大器,並運用變壓器負回授的方式來中和閘極與汲極間電容的效應,使得在低頻的最佳雜訊設計方式在K-頻段也可適用。使用TSMC CMOS 0.18-μm 製程實現的低雜訊放大器包括(1)變壓器回授的三級低雜訊放大器,在26 GHz 有最大增益約為9.2 dB,雜訊指數為6.9dB,IIP3 及P1dB 分別為-2 dBm 及-11 dBm,功率消耗為 64 mW;(2) 變壓器回授的三級低雜訊放大器,在25.8 GHz 有最大增益約為10 dB,雜訊指數為4.84dB,IIP3 及P1dB 分別為-5 dBm 及-17.8 dBm,功率消耗為 25.8 mW。
摘要(英) The content of this thesis is about phase noise mechanism in voltage controlledoscillator (VCO) and implementation of K-band low noise amplifier (LNA). Thetime-varying concept is used to analyze the phase noise caused by various noisesources in the circuits. The measurement results of the implemented VCO ensure thevalidity of the mentioned notion in this thesis. TSMC 0.18-μm CMOS technology isadopted to implement the following circuits; (1) Complemently cross couple VCO.The oscillation frequency is 5.2 GHz, tuning range is 633 MHz, phase noise is -120.2dBc/Hz at 1MHz offset, and -185.3 dBc/Hz of Figure-of-Merit (FOM); (2) Thesecond circuit is a noise-shifting Colpitts VCO. The oscillation frequency is 12.6 GHz,tuning range is 227 MHz, phase noise is -110.3 dBc/Hz at 1 MHz offset, and -182.74dBc/Hz of FOM; (3) The third circuit is a tripilar coupling VCO. The oscillationfrequency is 12.8 GHz, tuning range is 136 MHz, phase noise is -97.08 dBc/Hz at1MHz offset, and FOM is -181.53 dBc/Hz.
Due to the rapid development of wireless communication system, largerbandwidth and higher speed are required. In order to achieve the wide bandwidth,higher frequency communication standard become a necessary trend in recent years.For instance, the application of wireless broadband networks in IEEE 802.16 standardis wireless metropolitan area network (WMAN). Therefore, the K-band LNAs areimplemented in this thesis. In order to confirm the validity of the transistor widthoptimization method, the transformer feedback technique is employed to neutralize the gate-drain overlap capacitance. TSMC 0.18-μm CMOS technology is adopted toimplement the following LNAs; (1) A 26 GHz transformer feedback three cascadestages low noise amplifier achieved a power gain of 9.2 dB, a noise figure of 6.9 dB.The 1-dB gain compression point and the input third-order intercept point are -11dBm and -2 dBm, respectively, and total power consumption is 64 mW. (2) A 25.8GHz transformer feedback three cascade stages low noise amplifier achieved a powergain of 10 dB, 4.84 dB noise figure. The 1-dB gain compression point and the inputthird-order intercept point are -17.8 dBm and -5 dBm, respectively, and total powerconsumption is 25.8 mW.
關鍵字(中) ★ 壓控振盪器
★ 相位雜訊
★ 低雜訊放大器
關鍵字(英) ★ low noise amplifier
★ voltage controlled oscillator
★ phase noise
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅳ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 ⅩⅢ
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 壓控振盪器之相位雜訊分析 3
2-1相位雜訊導論 3
2-2 Lesson相位雜訊模型 5
2-3 Hajimiri 相位雜訊模型 8
2-3.1脈衝靈敏函數之特性分析 14
2-3.2雜訊調變函數之特性分析 22
2-4交錯耦合壓控振盪器之分析與實作 25
2-4.1文獻回顧 25
2-4.2交錯耦合壓控振盪器之分析 32
2-4.3 5 GHz交錯耦合壓控振盪器之實作 39
2-4.4量測結果 40
2-4.5結果討論 44
第三章 應用於802.16 WMAN壓控振盪器之研製 45
3-1考畢茲振盪器簡介 45
3-1.1雜訊平移考畢茲振盪器設計原理 47
3-1.2量測結果 51
3-1.3結果討論 54
3-2變壓器回授振盪器簡介 55
3-2.1雙變壓器回授振盪器設計原理 57
3-2.2量測結果 59
3-2.3結果討論 61
第四章 K頻段差動低雜訊放大器之研製 63
4-1 K頻段差動低雜訊放大器簡介 63
4-1.1低雜訊放大器雜訊分析 63
4-1.2變壓器回授理論分析 66
4-2 K頻段差動低雜訊放大器之實作 68
4-2.1電路架構一設計原理 68
4-2.2量測結果與討論 70
4-2.3電路架構二設計原理 73
4-2.4量測結果與討論 74
第五章 結論 80
5-1 結論 80
5-2 未來期許與研究方向 81
參考文獻 82
參考文獻 [1] D. B. Lesson, ”A Simple Model of Feedback Oscillator Noise Spectrum,” Proc.IEEE, vol. 54, issue 2, pp. 329-330, Feb. 1966.
[2] F. X. Kaerther, “Determination of the Correlation Spectrum of Oscillators with Low Noise,” IEEE Trans. Microwave Theory Tech. vol. 37, issue 2, pp 90-101, Jan.1989.
[3] B. Razavi,”A Study of Phase Noise in CMOS Oscillator,” IEEE J. of Solid-State Circuits, vol. 31, no. 3, pp. 331–343, March 1996.
[4] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, February 1998.
[5] Qiuting Huang, “On the Exact Design of RF oscillators,” IEEE Custom Integrated Circuits Conference, pp. 41-44, May 1998.
[6] Qiuting Huang, “Phase Noise to Carrier Ratio in LC Oscillators,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, vol.47, no.7, pp. 965-980 July 2000.
[7] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-562, 2000.
[8] P. Smulders, “Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future directions”, IEEE Commun. Mag., Vol. 2, No. 1, pp. 140-147, Jan. 2002.
[9] Federal Communications Commission, “Amendment of Parts 2, 15 and 97 of the Commission's Rules to Permit Use of Radio Frequencies Above 40 GHz for New Radio Applications”, FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
[10] L. Dai, R. Harjani, Design of High-Perfoemance CMOS Voltage-Controlled Oscillators, Kluwer Academic Publishers, 2003.
[11] B. Razavi, RF Microelectronics, Prentice Hall, Inc.1998.
[12] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[13] F. M. Gardner, “Charge-Pump Phase-Locked Loop,”IEEE Trans. Comm., vol.com-28, pp.1849-1858, Nov. 1980.
[14] E. J. Baghdady, R. N. Lincoln, and B. D. Nelin, “Short-Term Frequency Stability: Characterization, Theory, and Measurement,” Proc.IEEE, vol. 53, pp 704 -722, July 1965.
[15] L. S. Culter and C. L. Searle, “Some Aspects of the Theory and Measurement of Frequency Fluctuations in Frequency Standards,” Proc.IEEE, vol. 54, pp.136-154, Feb. 1966.
[16] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Kluwer Academic Publishers, 2002.
[17] Y. Ou, N. Barton, R. Fetche, N. Seshan, T. Fiez, U. Moon, and K. Mayaram, “Phase Noise Simulation and Estimation Methods : A Comparative Study,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol.49, no.9, pp. 635-638, Sept. July 2002.
[18] M. Grozing, T. Stumpf, S. Hanger, andM. Betroth, “MOSFET thermal- and 1/f-noise modulating functions for the impulse sensitivity function theory of oscillator phase noise,” Microwave Conference, vol. 2, pp. 949-952, Oct. 2004.
[19] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. of Solid-State Circuits, vol.34, no. 5, pp.717–724, May 1999.
[20] B. Soltanian and P. R. Kinget, “Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators” IEEE J. of Solid-State Circuits, vol. 41, no. 8, pp.1792–1802, Aug. 2006.
[21] P. Andreani and A. Fard, “More on the 1/f2 Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators” IEEE J. of Solid-State Circuits, vol. 41, no. 12, pp.2703–2712, Dec. 2006.
[22] E. Hegazi ,H. Sjöland, and A. A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise” IEEE J. of Solid-State Circuits, vol. 36, no. 12, pp.1921–1930, Dec. 2001.
[23] P. Andreani and H. Sjöland, “Tail Current Noise Suppression in RF CMOS VCOs” IEEE J. of Solid-State Circuits, vol. 37, no. 3, pp.342–348, March 2001.
[24] P. Andreani , X. Wang , L. Vandi , and A. Fard “A Study of Phase Noise in Colpitts and LC-Tank CMOS Oscillators,” IEEE J. of Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May 2005.
[25] Zhenbiao Li and O. K. K., ”A Low-Phase-Noise and Low-Power Multiband CMOS Voltage Controlled Oscillator,” IEEE J. of Solid-State Circuits, vol. 40, no. 6, pp. 1296-1302, June 2005.
[26] C. M. Hung, B. Floyd, and K. K. O, “A Fully Integrated 5.35-GHz CMOS VCO and a Prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no.1, pp. 17–22, Jan. 2001
[27] T. Y. Kim, A. Adams, and N. Weste, “High Performance SOI and Bulk CMOS 5 GHz VCO’s,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, Philadelphia, PA, pp. 93–96, Jun.2003.
[28] N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. of Solid-State Circuits, vol. 38, no. 8, pp.1333–1342, Aug. 2003.
[29] B. Min and H. Jeong, “5-GHz CMOS LC VCOs With Wide Tuning Ranges,” IEEE Microwave and Wireless Component Letter, vol. 15, issue 5, pp. 336-338, May 2005.
[30] B. Razavi, Design of analog CMos Integrated Circuits, McGraw-Hill, Inc.2001.
[31] R. Aparicio and A. Hajimiri, “A Noise-Shifting Differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[32] K. Kwok and H. C. Luong, “ Ultra-Low- Voltage High-Performance CMOS VCOs Using Transformer Feedback” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp.652-660, March 2005.
[33] Taeksang Song, Sangsoo Ko, Dae-Hyung Cho, Han-Su Oh, Chulho Chung, and Euisik Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE Radio Frequency Integrated Circuits Symposium, pp.127-130, June 2004.
[34] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-Band Cross-Coupled Complementary Oscillator With Low Phase-Noise Performance,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
[35] T. K. K. Tsang and M. N. El-Gamal, “A High Figure of Merit and Area-Efficient Low-Voltage (0.7-1V) 12GHz CMOS VCO,” IEEE Radio Frequency Integrated Circuits Symposium., pp. 89-92, June 2003.
[36] N.-J. Oh and S.-G Lee, “11-GHz CMOS Differential VCO With Back-Gate Transformer Feedback,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp.733–735, Nov. 2005.
[37] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675, Oct. 2005.
[38] David J. Cassan and John R. Long, “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18-um CMOS,” IEEE J. of Solid-State Circuits, vol. 38, no. 3, pp. 427-435, March 2003.
[39] Derek K. Shaeffer, Student Member, IEEE, and Thomas H. Lee, Member, IEEE, “A 1.5-V, 1.5 GHz CMOS Low-Noise Amplifier ,” IEEE J. of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[40] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Du Yang, and Sang-Gug Lee ,“CMOS Low-noise Amplifier Design Optimization Techniques” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp. 1433-1442, May 2004.
[41] M. Egels , J. Gaubert and P. Pannier , “High Frequency LNA in Standard CMOS process ,” Circuits and Systems, June 2006.
[42] Guan X. and Hajimiri A.; “A 24-GHz CMOS Front End”, IEEE J. of Solid-State Circuits, vol. 39, no. 2, pp 368-373, Feb.,2004.
[43] Shin S.-C.; Tsai Ming-Da; Liu Ren-Chieh; Lin K.-Y.; Wang Huei; “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18 µm CMOS Technology”, IEEE Microwave and Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[44] Yu Kyung-Wan; Lu Yin-Lung; Chang Da-Chiang ; Liang, V. ; Chang, M.F.; “K-band Low-Noise Amplifiers Using 0.18 µm CMOS Technology”, IEEE Microwave and Wireless Component Letter, vol. 14, no. 3, pp. 106-108, March 2004.
[45] L. M. Franca-Neto, B. A. Bloechel, and K. Soumyanath, “17 GHz and 24 GHz LNA Designs Based on Extracted-S-Parameter with Microstrip- on-Die in 0.18 μm Logic CMOS Technology,” Eur. Solid-State Circ., pp. 149–153, 2003.
[46] 李金龍, “雜訊消除放大器與寬頻矩陣型分佈式放大器暨壓控振盪器之研製,” 碩士論文, 國立中央大學, 2006。
[47] 鄒育霖, “Ka與V頻段低相位雜訊雙推式振盪器之研製”, 碩士論文, 國立中央大學, 2006。
[48] 曾卿銘, “3.1~10.6 GHz超寬頻接收機前端電路之研究”, 碩士論文, 國立中央大學, 2006。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2007-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明